On the approach to the critical point

James Glimm; Arthur Jaffe

Annales de l'I.H.P. Physique théorique (1975)

  • Volume: 22, Issue: 2, page 109-122
  • ISSN: 0246-0211

How to cite

top

Glimm, James, and Jaffe, Arthur. "On the approach to the critical point." Annales de l'I.H.P. Physique théorique 22.2 (1975): 109-122. <http://eudml.org/doc/75841>.

@article{Glimm1975,
author = {Glimm, James, Jaffe, Arthur},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {109-122},
publisher = {Gauthier-Villars},
title = {On the approach to the critical point},
url = {http://eudml.org/doc/75841},
volume = {22},
year = {1975},
}

TY - JOUR
AU - Glimm, James
AU - Jaffe, Arthur
TI - On the approach to the critical point
JO - Annales de l'I.H.P. Physique théorique
PY - 1975
PB - Gauthier-Villars
VL - 22
IS - 2
SP - 109
EP - 122
LA - eng
UR - http://eudml.org/doc/75841
ER -

References

top
  1. [1] O. Bratelli, Conservation of estimates in quantum field theory. Comm. Pure and Appl. Math., t. 25, 1972, p. 759-779. MR311234
  2. [2] C. Callan, Broken scale invariance in scalar field theory. Phys. Rev., D2, 1970, p. 1541-1547. 
  3. [3] S. Coleman, Scaling Anomalies, in Developments in High Energy Physics, Academic Press, New York, 1972, p. 280-296. MR452222
  4. [4] R. Dobrushin and R. Minlos, Construction of a one dimensional quantum field via a continuous Markov field. Funct. Anal. and its Appl., t. 7, 1973, p. 324-325 (English transl.). Zbl0294.60081
  5. [5] J. Fröhlich, Schwinger functions and their generating functionals I, II. Helv. Phys. Acta, and Adv. in Mathematics. Zbl0345.46057MR436830
  6. [6] J. Ginibre, General formulation of Griffiths' inequalities. Commun. Math. Phys., t. 16, 1970, p. 310-328. MR269252
  7. [7] J. Glimm and A. Jaffe, The (λφ4)2 quantum field theory without cutoffs III. The physical vacuum. Acta Math., t. 125, 1970, p. 203-261. MR269234
  8. [8] J. Glimm and A. Jaffe, The λ(φ4)2 quantum field theory IV. Perturbations of the Hamiltonian. J. Math. Phys., t. 13, 1972, p. 1558-1584. MR317683
  9. [9] J. Glimm and A. Jaffe, Entropy principle for vertex functions in quantum field models. Ann. Institut Henri Poincaré, t. 21, 1974, p. 1-26. MR391796
  10. [10] J. Glimm and A. Jaffe, Critical point dominance in quantum field models. Ann. Institut Henri Poincaré, t. 21, 1974, p. 27-41. MR413869
  11. [11] J. Glimm and A. Jaffe, φ42 quantum field model in the single-phase region: Differentiability of the mass and bounds on critical exponents, Phys. Rev., D15, to appear. 
  12. [12] J. Glimm and A. Jaffe, A remark on the existence of φ44. Phys. Rev. Lett., t. 33, 1974, p. 440-442. Zbl1329.81210MR400969
  13. [13] J. Glimm and A. Jaffe, Absolute bounds on vertices and couplings. Ann. Institut Henri Poincaré, t. 22, 1975, p. 1-13. MR384012
  14. [14] J. Glimm and A. Jaffe, Two and three body equations in quantum field models. Commun. Math. Phys., to appear. Zbl0191.27101MR413870
  15. [15] J. Glimm, A. Jaffe and T. Spencer, The Wightman axioms and particle structure in the P(φ)2 quantum field model. Ann. Math., t. 100, 1974, p. 585-632. MR363256
  16. [16] J. Glimm, A. Jaffe and T. Spencer, The particle structure of the weakly coupled P(φ)2 models and other applications of high temperature expansions, in: Constructive Quantum Field Theory, G. Velo and A. S. Wightman (eds.), Springer-Verlag, Berlin, 1973. MR395513
  17. [17] F. Guerra, L. Rosen and B. Simon, Nelson's Symmetry and the infinite volume behavior of the vacuum in P(φ)2. Commun. Math. Phys., t. 27, 1972, p. 10-22. MR311242
  18. [18] F. Guerra, L. Rosen and B. Simon, The P(φ)2 Euclidean quantum field theory as classical statistical mechanics. Ann. Math., t. 101, 1975, p. 111-259. MR378670
  19. [19] F. Guerra, L. Rosen and B. Simon, The pressure is independent of the boundary conditions, preprint. Zbl0306.60067MR434230
  20. [20] J. Lebowitz, More inequalities for Ising ferromagnets. Phys. Rev., B5, 1972, p. 2538- 2541. 
  21. [21] J. Lebowitz, GHS and other inequalities. Commun. Math. Phys., t. 35, 1974, p. 87-92. MR339738
  22. [22] R. Minlos and Ya. Sinai,Investigation of the spectra of stochastic operators arising in lattice models of a gas. Theoretical and Math. Phys., t. 2, 1970, p. 167-176 (English transl.). 
  23. [23] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's functions I, II. Commun. Math. Phys., t. 31, 1973, p. 83-113 and Commun. Math. Phys. Zbl0274.46047MR329492
  24. [24] G. Parisi, Field theory approach to second order phase transitions in two and three dimensional systems. 1973Cargèse lectures. 
  25. [25] Y. Park, , preprint. MR418721
  26. [26] E. Riedel and F. Wegner, Tricritical exponents and scaling fields. Phys. Rev. Lett., t. 29, 1972, p. 349-352. 
  27. [27] R. Schrader, Local operator products and field equations in P(φ)2 theories. 
  28. [28] T. Spencer, Perturbation of the P(φ)2 quantum field Hamiltonian. J. Math. Phys., t. 14, 1973, p. 823-828. MR327216
  29. [29] K. Symanzik, Small distance behavior in field theory and power counting. Commun. Math. Phys., t. 18, 1970, p. 227-246. Zbl0195.55902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.