The entropy principle for vertex functions in quantum field models

James Glimm; Arthur Jaffe

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 21, Issue: 1, page 1-25
  • ISSN: 0246-0211

How to cite

top

Glimm, James, and Jaffe, Arthur. "The entropy principle for vertex functions in quantum field models." Annales de l'I.H.P. Physique théorique 21.1 (1974): 1-25. <http://eudml.org/doc/75817>.

@article{Glimm1974,
author = {Glimm, James, Jaffe, Arthur},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Gauthier-Villars},
title = {The entropy principle for vertex functions in quantum field models},
url = {http://eudml.org/doc/75817},
volume = {21},
year = {1974},
}

TY - JOUR
AU - Glimm, James
AU - Jaffe, Arthur
TI - The entropy principle for vertex functions in quantum field models
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 21
IS - 1
SP - 1
EP - 25
LA - eng
UR - http://eudml.org/doc/75817
ER -

References

top
  1. [1] J. Dimock, Asymptotic perturbation expansion in the P(Φ)2 quantum field theory. Commun. Math. Phys., t. 35, 1974, p. 347-356. MR334756
  2. [2] C. De Dominicis and P. Martin, Stationary entropy principle and renormalization in normal and superfluid systems I, II. Jour. Math. Phys., t. 5, 1964, p. 14-30, p. 31-59. 
  3. [3] J. Glimm, A. Jaffe and T. Spencer, The Wightman axioms and particle structure in the P(Φ)2 quantum field model. Ann. Math., to appear. 
  4. [4] J. Glimm, A. Jaffe and T. Spencer, The particle structure of the weakly coupled P(Φ)2 models and other applications of high temperature expansions. Part II. The cluster expansion. In: Constructive quantum field theory, Ed. by G. Velo and A. Wightman, Lecture notes in physics, Vol. 25, Springer Verlag, Berlin, 1973. MR395513
  5. [5] J. Feldman, The λΦ43 field theory in a finite volume. 
  6. [6] J. Fröhlich, Schwinger functions and their generating functionals. I. Helv. Phys. Acta. Zbl0345.46057MR436830
  7. [7] G. Jona-Lasinio, Relativistic field theories with symmetry breaking solutions. Nuovo Cimento (L), t. 34, 1964, p. 1790-1795. 
  8. [8] J. Moreau, Sous-différentiabilité. In : Colloquium on convexity, ed. by Fenchel. Kobenhavns Universitet Matematisk Institut, Copenhagen, 1967. Zbl0185.39401MR217598
  9. [9] K. Symanzik, On the many-particle structure of Green's functions in quantum field theory. J. Math. Phys., t. 1, 1960, p. 249-273. MR145878
  10. [10] K. Symanzik, Renormalizable models with simple symmetry breaking. I. Symmetry breaking by a source term. Commun. Math. Phys., t. 16, 1970, p. 48-80. MR266541
  11. [11] A.N. Vasilev and A.K. Kazanskii, Legendre transforms of the generating functionals in quantum field theory. Teoret. i Mat. Fizika, t. 12, 1972, p. 352-369. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.