Unbounded derivations of von Neumann algebras

Ola Bratteli; Derek W. Robinson

Annales de l'I.H.P. Physique théorique (1976)

  • Volume: 25, Issue: 2, page 139-164
  • ISSN: 0246-0211

How to cite

top

Bratteli, Ola, and Robinson, Derek W.. "Unbounded derivations of von Neumann algebras." Annales de l'I.H.P. Physique théorique 25.2 (1976): 139-164. <http://eudml.org/doc/75914>.

@article{Bratteli1976,
author = {Bratteli, Ola, Robinson, Derek W.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {139-164},
publisher = {Gauthier-Villars},
title = {Unbounded derivations of von Neumann algebras},
url = {http://eudml.org/doc/75914},
volume = {25},
year = {1976},
}

TY - JOUR
AU - Bratteli, Ola
AU - Robinson, Derek W.
TI - Unbounded derivations of von Neumann algebras
JO - Annales de l'I.H.P. Physique théorique
PY - 1976
PB - Gauthier-Villars
VL - 25
IS - 2
SP - 139
EP - 164
LA - eng
UR - http://eudml.org/doc/75914
ER -

References

top
  1. [1] O. Bratteli and D.W. Robinson, Unbounded Derivations of C*-Algebras, Commun. math. Phys., t. 42, 1975, p. 253-268. Zbl0302.46043MR377526
  2. [2] O. Bratteli and D.W. Robinson, Unbounded Derivations of C*-Algebras II, Commun. math. Phys., t. 46, 1976, p. 11-30. Zbl0315.46053MR390785
  3. [3] D.W. Robinson, Statistical Mechanics of Quantum Spin Systems II, Commun. math. Phys., t. 7, 1968, p. 337-348. Zbl0162.29304MR228246
  4. [4] M.B. Ruskai, Time Development of Quantum Lattice Systems, Commun. math. Phys., t. 20, 1971, p. 193-204. MR278677
  5. [5] M. Pulvirenti and B. Tirozzi, Time Evolution of a Quantum Lattice System, Commun. math. Phys., t. 30, 1973, p. 83-98. MR323261
  6. [6] D.A. Dubin and G. Sevell, Time Translations in the Algebraic Formulation of Statistical Mechanics, Jour. Math. Phys., t. 11, 1970, p. 2990-2998. Zbl0201.58502MR277220
  7. [7] O.E. Lanford and D.W. Robinson, Approach to Equilibrium of Free Quantum Systems, Commun. math. Phys., t. 24, 1972, p. 193-210. MR290704
  8. [8] S. Sakai, C*-Algebras and W*-Algebras, Springer Verlag, Berlin, 1971. Zbl0219.46042MR442701
  9. [9] W. Arveson, On Groups of Automorphisms of Operator Algebras, Jour. Func. Anal., t. 15, 1974, p. 217-243. Zbl0296.46064MR348518
  10. [10] K. Yosida, Functional Analysis, 4th Edition, Springer Verlag, Berlin, 1975. Zbl0286.46002MR350358
  11. [11] A. Ikunishi and Y. Nakagami, On invariants G(σ) and Γ(σ) for an automorphism group of a von Neumann Algebra, Tokyo Kogyo Daigaku Preprint, 1974. 
  12. [12] R.V. Kadison, Derivation of Operator Algebras, Ann. Math., t. 83, 1966, p. 280-293. Zbl0139.30503
  13. [13] H. Araki, Some Properties of Modular Conjugation Operator of von Neumann Algebras and a Non-Commutative Radon-Nikodym Theorem with a Chain Rule. Pac. Jour. Math., t. 50, 1974, p. 309-354. Zbl0287.46074MR350437
  14. [14] A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, Grenoble, 24.4, 1974, p. 121-155. Zbl0287.46078MR377533
  15. [15] H. Araki, Radon-Nikodym Theorems, Relative Hamiltonian and Applications, Proc. Int. School of Physics, Varenna, 1973. 
  16. [16] R.V. Kadison, Transformations of States in Operator Theory and Dynamics, Topology, t. 3, 1965, p. 177-198. Zbl0129.08705MR169073
  17. [17] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101MR145455
  18. [18] G. Gallavotti and M. Pulvirenti, Classical KMS Condition and Tomita-Takesaki Theory, Commun. math. Phys., t. 46, 1976, p. 1-9. Zbl0323.28011MR405121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.