On the principle of stability of invariance of physical systems

K. Tahir Shah

Annales de l'I.H.P. Physique théorique (1976)

  • Volume: 25, Issue: 2, page 177-182
  • ISSN: 0246-0211

How to cite

top

Tahir Shah, K.. "On the principle of stability of invariance of physical systems." Annales de l'I.H.P. Physique théorique 25.2 (1976): 177-182. <http://eudml.org/doc/75916>.

@article{TahirShah1976,
author = {Tahir Shah, K.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {177-182},
publisher = {Gauthier-Villars},
title = {On the principle of stability of invariance of physical systems},
url = {http://eudml.org/doc/75916},
volume = {25},
year = {1976},
}

TY - JOUR
AU - Tahir Shah, K.
TI - On the principle of stability of invariance of physical systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1976
PB - Gauthier-Villars
VL - 25
IS - 2
SP - 177
EP - 182
LA - eng
UR - http://eudml.org/doc/75916
ER -

References

top
  1. [1] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Paris, 1899. 
  2. [2] R. Abraham and J. Marsden, Foundation of Mechanics, Benjamin, New York, 1967. 
  3. [3] We do not list papers because of extreamly large numbers of papers in this field. 
  4. [4] R. Thom, Stabilité Structurelle et Morphogenèse, Benjamin, 1972 and reference there in. Zbl0294.92001MR488155
  5. [5] H.D. Doebner, Nouvo Cim., A49, 1967, p. 306; Jour. of Math. Phys., t. 9, 1968, p. 1638 and t. 11, 1970, p. 1463. Zbl0144.46201
  6. [6] K.T. Shah, Topics in bifurcation theory, Seminar report, Clausthal, 1973. 
  7. [7] K.T. Shah, Reports on Math. Phys., t. 6, 1974, p. 171. Zbl0314.17011MR385018
  8. [8] R. Thom, Symmetries gained and lost, Proceedings of III GIFT Seminars in Theor. Phys., Madrid, 1972 ; see also L. Michel, Geometrical aspects of symmetry breaking, same proceedings. 
  9. [9] R. Richardson, Jour. of Diff. Geom., t. 3, 1969, p. 289. Zbl0215.38603
  10. [10] R. Richardson, Proceedings of Symp. on Transformation Groups, Edited by P. Mostert, p. 429, Springer-Verlag, 1967. MR244439
  11. [11] M. Peixoto, (Topology, t. 1, 1962, p. 101, Ann. of Math., t. 87, 1968, p. 422) has shown that if the dimension of the manifold is two, then the set of structurally stable vector field or dynamical system is a dense set on the set of all vector fields on this two dimensional manifold. In the case of differentiable maps i. e. C∞-maps, one can define stability as follows. Let Mn and Np be the two C∞-manifolds and let Cr (,) be the space of all maps from Mn to Np provided with the Cr-topology. A map is called stable if all'nearby maps' k are of the same type topologically as f and the diagram is commutative, i. e. fh = h'k where h and h' are ∈-homeomorphisms of Mn and Np. For a general reference, see M. Golubitsky and Guillemin, Stable mappings and their Singularities, Springer-Verlag, 1973. MR142859
  12. [12] E.P. Wigner and E. Inönü, Proc. Natl. Acad. Sci (USA), t. 39, 1953, p. 510. Zbl0050.02601MR55352

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.