On the principle of stability of invariance of physical systems
Annales de l'I.H.P. Physique théorique (1976)
- Volume: 25, Issue: 2, page 177-182
- ISSN: 0246-0211
Access Full Article
topHow to cite
topTahir Shah, K.. "On the principle of stability of invariance of physical systems." Annales de l'I.H.P. Physique théorique 25.2 (1976): 177-182. <http://eudml.org/doc/75916>.
@article{TahirShah1976,
author = {Tahir Shah, K.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {177-182},
publisher = {Gauthier-Villars},
title = {On the principle of stability of invariance of physical systems},
url = {http://eudml.org/doc/75916},
volume = {25},
year = {1976},
}
TY - JOUR
AU - Tahir Shah, K.
TI - On the principle of stability of invariance of physical systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1976
PB - Gauthier-Villars
VL - 25
IS - 2
SP - 177
EP - 182
LA - eng
UR - http://eudml.org/doc/75916
ER -
References
top- [1] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Paris, 1899.
- [2] R. Abraham and J. Marsden, Foundation of Mechanics, Benjamin, New York, 1967.
- [3] We do not list papers because of extreamly large numbers of papers in this field.
- [4] R. Thom, Stabilité Structurelle et Morphogenèse, Benjamin, 1972 and reference there in. Zbl0294.92001MR488155
- [5] H.D. Doebner, Nouvo Cim., A49, 1967, p. 306; Jour. of Math. Phys., t. 9, 1968, p. 1638 and t. 11, 1970, p. 1463. Zbl0144.46201
- [6] K.T. Shah, Topics in bifurcation theory, Seminar report, Clausthal, 1973.
- [7] K.T. Shah, Reports on Math. Phys., t. 6, 1974, p. 171. Zbl0314.17011MR385018
- [8] R. Thom, Symmetries gained and lost, Proceedings of III GIFT Seminars in Theor. Phys., Madrid, 1972 ; see also L. Michel, Geometrical aspects of symmetry breaking, same proceedings.
- [9] R. Richardson, Jour. of Diff. Geom., t. 3, 1969, p. 289. Zbl0215.38603
- [10] R. Richardson, Proceedings of Symp. on Transformation Groups, Edited by P. Mostert, p. 429, Springer-Verlag, 1967. MR244439
- [11] M. Peixoto, (Topology, t. 1, 1962, p. 101, Ann. of Math., t. 87, 1968, p. 422) has shown that if the dimension of the manifold is two, then the set of structurally stable vector field or dynamical system is a dense set on the set of all vector fields on this two dimensional manifold. In the case of differentiable maps i. e. C∞-maps, one can define stability as follows. Let Mn and Np be the two C∞-manifolds and let Cr (,) be the space of all maps from Mn to Np provided with the Cr-topology. A map is called stable if all'nearby maps' k are of the same type topologically as f and the diagram is commutative, i. e. fh = h'k where h and h' are ∈-homeomorphisms of Mn and Np. For a general reference, see M. Golubitsky and Guillemin, Stable mappings and their Singularities, Springer-Verlag, 1973. MR142859
- [12] E.P. Wigner and E. Inönü, Proc. Natl. Acad. Sci (USA), t. 39, 1953, p. 510. Zbl0050.02601MR55352
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.