Quantization and global properties of manifolds
Annales de l'I.H.P. Physique théorique (1978)
- Volume: 28, Issue: 2, page 137-154
- ISSN: 0246-0211
Access Full Article
topHow to cite
topKolerov, G. I.. "Quantization and global properties of manifolds." Annales de l'I.H.P. Physique théorique 28.2 (1978): 137-154. <http://eudml.org/doc/75975>.
@article{Kolerov1978,
author = {Kolerov, G. I.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {137-154},
publisher = {Gauthier-Villars},
title = {Quantization and global properties of manifolds},
url = {http://eudml.org/doc/75975},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Kolerov, G. I.
TI - Quantization and global properties of manifolds
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 28
IS - 2
SP - 137
EP - 154
LA - eng
UR - http://eudml.org/doc/75975
ER -
References
top- [1] H. Weyl, Gruppentheorie und Quantenmechanik, Leipzig, 1931. JFM57.1579.01
- [2] R. Feynman, Rev. Mod. Phys., t. 20, 1948, p. 371.
- [3] A.A. Kirillov, Elements of the Theory of Representation « Nauka », Moscow, 1972 (in Russian). MR509211
- [4] B. Kostant, Quantization and unitary representations. Springer Lecture Notes, t. 170, 1970, p. 87-208. Zbl0223.53028MR294568
- [5] P.A.M. Dirac, Lectures on Quantum Mechanics, New York, 1964.
- [6] F.A. Berezin, Quantization, Izv. AN USSR (ser. math.), t. 38, 1974, p. 5 (in Russian). Zbl0312.53049MR395610
- [7] N. Steenrod, The Topology of Fibre Bundles, Princeton, New Jersey, 1951. Zbl0054.07103MR39258
- [8] K. Nomizu, Lie Groups and Differential Geometry, The Mathematical Society of Japan, 1956. Zbl0071.15402MR84166
- [9] W. Mackey, The Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, Inc., New York, Amsterdam, 1963. Zbl0114.44002
- [10] S. Stenberg, Lectures on Differential Geometry, Prentice Hall, Inc., Englewood Cliffs, N. J., 1964. Zbl0129.13102MR193578
- [11] V.I. Arnol'd, Mathematical Methods of Classical Mechanics, « Nauka », Moscow, 1974 (in Russian). Zbl0647.70001MR474390
- [12] R.L. Beshop, R.J. Crittenden, Geometry of Manifolds, Academic Press, New York and London, 1964. Zbl0132.16003MR169148
- [13] V.I. Arnol'd, Peculiarities of Smooth Maps, Uspekhi Math. Nauk, t. 23, 1968, p. 1 (in Russian). Zbl0167.21702
- [14] C. Godbillon, Géometrie différentielle et Mécanique Analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
- [15] G. De Rham, Variétés différentiables, Hermann, Paris, 1960. Zbl0089.08105
- [16] L.P. Eisenhart, Continuous Groups of Transformations, Princeton, 1933. Zbl0008.10801
- [17] C. Teleman, Elemente de topologie si varietati differentiabile, Bucuresti, 1964. MR199857
- [18] S.S. Chern, Complex Manifolds, The University of Chicago, Autumn, 1955.
- [19] S.T. Hu, Homotopy Theory, Academic Press, New York, London, 1959. Zbl0088.38803MR106454
- [20] Yu.L. Dalitsky, Continual Integrals, Uspekhi Mat. Nauk, XVII, n°5, 1962 (in Russian).
- [21] H. Seifert, W. Threlfall, Variationsrechnung in Grossen, 1938. Zbl0021.14103JFM64.0499.02
- [22] J. Milnor, Morse Theory, Annals of Mathematics Studies, 51, Princeton, University Press, 1963. Zbl0108.10401MR163331
- [23] E. Nelson, Quantum fields and Markoff fields, in « Partial Differential equations », ed. D. Spencer, Symp. in Pure Math., vol. 23, A. M. S. Publications, 1973, p. 413- 420. Zbl0279.60096MR337206
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.