Quantization and global properties of manifolds

G. I. Kolerov

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 28, Issue: 2, page 137-154
  • ISSN: 0246-0211

How to cite

top

Kolerov, G. I.. "Quantization and global properties of manifolds." Annales de l'I.H.P. Physique théorique 28.2 (1978): 137-154. <http://eudml.org/doc/75975>.

@article{Kolerov1978,
author = {Kolerov, G. I.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {137-154},
publisher = {Gauthier-Villars},
title = {Quantization and global properties of manifolds},
url = {http://eudml.org/doc/75975},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Kolerov, G. I.
TI - Quantization and global properties of manifolds
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 28
IS - 2
SP - 137
EP - 154
LA - eng
UR - http://eudml.org/doc/75975
ER -

References

top
  1. [1] H. Weyl, Gruppentheorie und Quantenmechanik, Leipzig, 1931. JFM57.1579.01
  2. [2] R. Feynman, Rev. Mod. Phys., t. 20, 1948, p. 371. 
  3. [3] A.A. Kirillov, Elements of the Theory of Representation « Nauka », Moscow, 1972 (in Russian). MR509211
  4. [4] B. Kostant, Quantization and unitary representations. Springer Lecture Notes, t. 170, 1970, p. 87-208. Zbl0223.53028MR294568
  5. [5] P.A.M. Dirac, Lectures on Quantum Mechanics, New York, 1964. 
  6. [6] F.A. Berezin, Quantization, Izv. AN USSR (ser. math.), t. 38, 1974, p. 5 (in Russian). Zbl0312.53049MR395610
  7. [7] N. Steenrod, The Topology of Fibre Bundles, Princeton, New Jersey, 1951. Zbl0054.07103MR39258
  8. [8] K. Nomizu, Lie Groups and Differential Geometry, The Mathematical Society of Japan, 1956. Zbl0071.15402MR84166
  9. [9] W. Mackey, The Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, Inc., New York, Amsterdam, 1963. Zbl0114.44002
  10. [10] S. Stenberg, Lectures on Differential Geometry, Prentice Hall, Inc., Englewood Cliffs, N. J., 1964. Zbl0129.13102MR193578
  11. [11] V.I. Arnol'd, Mathematical Methods of Classical Mechanics, « Nauka », Moscow, 1974 (in Russian). Zbl0647.70001MR474390
  12. [12] R.L. Beshop, R.J. Crittenden, Geometry of Manifolds, Academic Press, New York and London, 1964. Zbl0132.16003MR169148
  13. [13] V.I. Arnol'd, Peculiarities of Smooth Maps, Uspekhi Math. Nauk, t. 23, 1968, p. 1 (in Russian). Zbl0167.21702
  14. [14] C. Godbillon, Géometrie différentielle et Mécanique Analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
  15. [15] G. De Rham, Variétés différentiables, Hermann, Paris, 1960. Zbl0089.08105
  16. [16] L.P. Eisenhart, Continuous Groups of Transformations, Princeton, 1933. Zbl0008.10801
  17. [17] C. Teleman, Elemente de topologie si varietati differentiabile, Bucuresti, 1964. MR199857
  18. [18] S.S. Chern, Complex Manifolds, The University of Chicago, Autumn, 1955. 
  19. [19] S.T. Hu, Homotopy Theory, Academic Press, New York, London, 1959. Zbl0088.38803MR106454
  20. [20] Yu.L. Dalitsky, Continual Integrals, Uspekhi Mat. Nauk, XVII, n°5, 1962 (in Russian). 
  21. [21] H. Seifert, W. Threlfall, Variationsrechnung in Grossen, 1938. Zbl0021.14103JFM64.0499.02
  22. [22] J. Milnor, Morse Theory, Annals of Mathematics Studies, 51, Princeton, University Press, 1963. Zbl0108.10401MR163331
  23. [23] E. Nelson, Quantum fields and Markoff fields, in « Partial Differential equations », ed. D. Spencer, Symp. in Pure Math., vol. 23, A. M. S. Publications, 1973, p. 413- 420. Zbl0279.60096MR337206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.