Maximizing properties of extremal surfaces in general relativity
Annales de l'I.H.P. Physique théorique (1978)
- Volume: 28, Issue: 3, page 335-347
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBrill, Dieter, and Flaherty, Frank. "Maximizing properties of extremal surfaces in general relativity." Annales de l'I.H.P. Physique théorique 28.3 (1978): 335-347. <http://eudml.org/doc/75984>.
@article{Brill1978,
author = {Brill, Dieter, Flaherty, Frank},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {335-347},
publisher = {Gauthier-Villars},
title = {Maximizing properties of extremal surfaces in general relativity},
url = {http://eudml.org/doc/75984},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Brill, Dieter
AU - Flaherty, Frank
TI - Maximizing properties of extremal surfaces in general relativity
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 28
IS - 3
SP - 335
EP - 347
LA - eng
UR - http://eudml.org/doc/75984
ER -
References
top- [1] R. Arnowitt, S. Deser, C.W. Misner, in : Gravitation (ed. L. Witten), New York, Wiley, 1962 ; D. Brill, S. Deser, Ann. Phys. New York, t. 50, 1968, p. 548 ; J. York, N. O'Murchadha, J. Math. Phys., t. 14, 1973, p. 1551 ; E. Schücking, talk given at I. C. T. P., Trieste, July 1975 ; Y. Choquet-Bruhat, A.E. Fischer, J.E. Marsden, Proceedings of 1976 « E. Fermi » school of Physics. MR143629
- [2] D. Brill, F. Flaherty, Comm. Math. Phys., t. 50, 1976, p. 157. Zbl0337.53051MR459496
- [3] E. Heinz, Math. Ann., t. 127, 1954, p. 258 ; M. Miranda, Proc. Symp. Pure Math., XXIII, 1973, p. 1 ; D. Brill, J. Isenberg, to be published. Zbl0055.15303MR70013
- [4] A.J. Goddard, Ph. D. Thesis, Oxford, 1975. G. R. G. Journal, t. 8, 1977, p. 525.
- [5] The operators which we define on the normal bundle would correspond to operators acting on scalars in the usual [1] « 3 + 1 decomposition ». See appendix of [2] for more detail. Among the advantages of using the normal bundle are that e. g. the mean curvature vector is independent of the choice of normal direction, and that the approach can more easily be generalized to hypersurfaces of higher codimension.
- [6] See, for example, R. Courant, D. Hilbert, Methods of Mathematical Physics, Vo. II, New York, Wiley, 1962.
- [7] M. Morse, The Calculus of Variations in the Large, New York. Amer. Math. Soc., 1934. Zbl0011.02802JFM60.0450.01
- [8] J. Simons, Ann. Math. (USA), t. 88, 1968, p. 62. Zbl0181.49702MR233295
- [9] S. Hawking, G. Ellis, The large scale structure of spacetime, Cambridge, University Press, 1973. Zbl0265.53054MR424186
- [10] F. Tipler, J. Math. Phys., t. 18, 1977, p. 1568. Zbl0365.53019
- [11] A.H. Taub, Ann. Math. (USA), t. 53, 1951, p. 472; C.W. Misner, A.H. Taub, J. E. T. P., t. 28, 1968, p. 122. Zbl0044.22804
- [12] D.R. Brill, Phys. Rev. B, t. 133, 1964, p. 845. Zbl0116.44303MR161724
- [13] We use the convention of earlier publications [11, 12], without a factor 1/2. The « unit » 3-sphere then has radius 2 rather than 1.
- [14] A. Lichnerowicz, Problèmes globaux en Mécanique Relativiste, Paris, Herman, 1939 ; Y. Choquet-Bruhat, J. Rat., Mech. Anal., t. 5, 1956, p. 951. Zbl0061.47002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.