Maximizing properties of extremal surfaces in general relativity

Dieter Brill; Frank Flaherty

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 28, Issue: 3, page 335-347
  • ISSN: 0246-0211

How to cite

top

Brill, Dieter, and Flaherty, Frank. "Maximizing properties of extremal surfaces in general relativity." Annales de l'I.H.P. Physique théorique 28.3 (1978): 335-347. <http://eudml.org/doc/75984>.

@article{Brill1978,
author = {Brill, Dieter, Flaherty, Frank},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {335-347},
publisher = {Gauthier-Villars},
title = {Maximizing properties of extremal surfaces in general relativity},
url = {http://eudml.org/doc/75984},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Brill, Dieter
AU - Flaherty, Frank
TI - Maximizing properties of extremal surfaces in general relativity
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 28
IS - 3
SP - 335
EP - 347
LA - eng
UR - http://eudml.org/doc/75984
ER -

References

top
  1. [1] R. Arnowitt, S. Deser, C.W. Misner, in : Gravitation (ed. L. Witten), New York, Wiley, 1962 ; D. Brill, S. Deser, Ann. Phys. New York, t. 50, 1968, p. 548 ; J. York, N. O'Murchadha, J. Math. Phys., t. 14, 1973, p. 1551 ; E. Schücking, talk given at I. C. T. P., Trieste, July 1975 ; Y. Choquet-Bruhat, A.E. Fischer, J.E. Marsden, Proceedings of 1976 « E. Fermi » school of Physics. MR143629
  2. [2] D. Brill, F. Flaherty, Comm. Math. Phys., t. 50, 1976, p. 157. Zbl0337.53051MR459496
  3. [3] E. Heinz, Math. Ann., t. 127, 1954, p. 258 ; M. Miranda, Proc. Symp. Pure Math., XXIII, 1973, p. 1 ; D. Brill, J. Isenberg, to be published. Zbl0055.15303MR70013
  4. [4] A.J. Goddard, Ph. D. Thesis, Oxford, 1975. G. R. G. Journal, t. 8, 1977, p. 525. 
  5. [5] The operators which we define on the normal bundle would correspond to operators acting on scalars in the usual [1] « 3 + 1 decomposition ». See appendix of [2] for more detail. Among the advantages of using the normal bundle are that e. g. the mean curvature vector is independent of the choice of normal direction, and that the approach can more easily be generalized to hypersurfaces of higher codimension. 
  6. [6] See, for example, R. Courant, D. Hilbert, Methods of Mathematical Physics, Vo. II, New York, Wiley, 1962. 
  7. [7] M. Morse, The Calculus of Variations in the Large, New York. Amer. Math. Soc., 1934. Zbl0011.02802JFM60.0450.01
  8. [8] J. Simons, Ann. Math. (USA), t. 88, 1968, p. 62. Zbl0181.49702MR233295
  9. [9] S. Hawking, G. Ellis, The large scale structure of spacetime, Cambridge, University Press, 1973. Zbl0265.53054MR424186
  10. [10] F. Tipler, J. Math. Phys., t. 18, 1977, p. 1568. Zbl0365.53019
  11. [11] A.H. Taub, Ann. Math. (USA), t. 53, 1951, p. 472; C.W. Misner, A.H. Taub, J. E. T. P., t. 28, 1968, p. 122. Zbl0044.22804
  12. [12] D.R. Brill, Phys. Rev. B, t. 133, 1964, p. 845. Zbl0116.44303MR161724
  13. [13] We use the convention of earlier publications [11, 12], without a factor 1/2. The « unit » 3-sphere then has radius 2 rather than 1. 
  14. [14] A. Lichnerowicz, Problèmes globaux en Mécanique Relativiste, Paris, Herman, 1939 ; Y. Choquet-Bruhat, J. Rat., Mech. Anal., t. 5, 1956, p. 951. Zbl0061.47002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.