Displaying similar documents to “Maximizing properties of extremal surfaces in general relativity”

Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations

Georgi Ganchev, Vesselka Mihova (2013)

Open Mathematics

Similarity:

On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten...

Lorentzian isothermic surfaces and Bonnet pairs

M. A. Magid (2004)

Annales Polonici Mathematici

Similarity:

Lorentzian surfaces in Lorentz three-space are studied using an indefinite version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space is obtained.

Metric minimizing surfaces.

Petrunin, Anton (1999)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Similarity:

Invariants and Bonnet-type theorem for surfaces in ℝ4

Georgi Ganchev, Velichka Milousheva (2010)

Open Mathematics

Similarity:

In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes...