La théorie des catastrophes. V. Transformées de Legendre et thermodynamique

Jean-Guy Dubois; Jean-Paul Dufour

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 29, Issue: 1, page 1-50
  • ISSN: 0246-0211

How to cite

top

Dubois, Jean-Guy, and Dufour, Jean-Paul. "La théorie des catastrophes. V. Transformées de Legendre et thermodynamique." Annales de l'I.H.P. Physique théorique 29.1 (1978): 1-50. <http://eudml.org/doc/75995>.

@article{Dubois1978,
author = {Dubois, Jean-Guy, Dufour, Jean-Paul},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Legendres Transformation; Qualitative Thermodynamics; Catastrophes; Contact Transformation},
language = {fre},
number = {1},
pages = {1-50},
publisher = {Gauthier-Villars},
title = {La théorie des catastrophes. V. Transformées de Legendre et thermodynamique},
url = {http://eudml.org/doc/75995},
volume = {29},
year = {1978},
}

TY - JOUR
AU - Dubois, Jean-Guy
AU - Dufour, Jean-Paul
TI - La théorie des catastrophes. V. Transformées de Legendre et thermodynamique
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 1
SP - 1
EP - 50
LA - fre
KW - Legendres Transformation; Qualitative Thermodynamics; Catastrophes; Contact Transformation
UR - http://eudml.org/doc/75995
ER -

References

top
  1. [1] J.W. Gibbs, On the Equilibrium of Heterogeneous Substances, 1874-1878. JFM10.0759.01
  2. [2] V.I. Arnol'd, Critical points of smooth functions, dansCongrès International des Mathématiciens, le 17e. Vancouver. 1974. MR431217
  3. [3] J.N. Mather, Stability of C∞ mappings. II. Infinitesimal stability. Ann. of Math., no. 89, 1969, p. 254. Zbl0177.26002MR259953
  4. [4] L. Hormander, Fourier integral operators I. Acta Mathematica, vol. 127, 1971, p. 79. Zbl0212.46601MR388463
  5. [5] J.-G. Dubois, J.-P. Dufour, O. Stanek, La théorie des catastrophes. IV. Déploiements universels et leurs catastrophes. Ann. Inst. Henri Poincaré, vol. XXIV, no. 3, 1976, p. 261. Zbl0407.58015MR426023
  6. [6] J. Guckenheimer, Catastrophes and partial differential equations. Ann. Inst. Fourier, vol. 23, n° 2, 1973, p. 31. Zbl0271.35006MR365627
  7. [7] C. Zeeman, The classification of elementary catastrophes of codimension ≥ 5. dans Structural Stability, the Theory of Catastrophes, and Applications in the Sciences. Lecture Notes in Mathematics, vol. 525. Springer-Verlag, Berlin. 1976, p. 263. Zbl0342.58012MR515875
  8. [8] H.B. Callen, Thermodynamics, John Wiley, and Sons, New York, 1960. Zbl0095.23301
  9. [9] R. Thom, Stabilité structurelle et morphogenèse. Benjamin, Reading, Mass., 1972. Zbl0294.92001MR488155
  10. [10] J.E. Ricci, The Phase Rule and Heterogeneous Equilibrium. Dover Publ., New York, 1966. 
  11. [11] J.N. Mather, Stability of C∞ mappings. V. Transversality. Adv. in Math., vol. 4. 1970, p. 301. Zbl0207.54303MR275461
  12. [12] F. Latour. Stabilité des champs d'applications différentiables ; généralisation d'un théorème de J. Mather. C. R. Acad Sci Paris, t. 268. 1969. p. 1331. Zbl0184.48501MR246313
  13. [13] J.J. Duistermaat, Oscillatory Integrals. Lagrange Immersions, and Unfoldings of Singularities. Commun. pure appl. Math., vol. XXVII, no. 2. 1974, p. 207. Zbl0285.35010MR405513

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.