Coherent states and square integrable representations

Henri Moscovici; Andrei Verona

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 29, Issue: 2, page 139-156
  • ISSN: 0246-0211

How to cite

top

Moscovici, Henri, and Verona, Andrei. "Coherent states and square integrable representations." Annales de l'I.H.P. Physique théorique 29.2 (1978): 139-156. <http://eudml.org/doc/75998>.

@article{Moscovici1978,
author = {Moscovici, Henri, Verona, Andrei},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Irreducible Unitary Representation; Square Integrable Representations; Coherent State Representations; Reductive Group; Exponential Lie Group; Discrete Kernel; Torus; Relative Discrete Series},
language = {eng},
number = {2},
pages = {139-156},
publisher = {Gauthier-Villars},
title = {Coherent states and square integrable representations},
url = {http://eudml.org/doc/75998},
volume = {29},
year = {1978},
}

TY - JOUR
AU - Moscovici, Henri
AU - Verona, Andrei
TI - Coherent states and square integrable representations
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 139
EP - 156
LA - eng
KW - Irreducible Unitary Representation; Square Integrable Representations; Coherent State Representations; Reductive Group; Exponential Lie Group; Discrete Kernel; Torus; Relative Discrete Series
UR - http://eudml.org/doc/75998
ER -

References

top
  1. [1] N.H. Anh, Lie groups with square integrable representations. Ann. of Math., t. 104, 1976, p. 431-458. Zbl0359.22007MR432822
  2. [2] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups. Inventiones Math., t. 14, 1971, p. 255-354. Zbl0233.22005MR293012
  3. [3] P. Bernat et al., Représentations des groupes de Lie résolubles. Dunod, Paris, 1972. Zbl0248.22012MR444836
  4. [4] J.-Y. Charbonnel, La formule de Plancherel pour un groupe de Lie résoluble connexe. Thèse 3e cycle, Université Paris VII. Zbl0416.22012
  5. [5] Harish- Chandra, Discrete series for semisimple Lie groups, II. Acta Math., t. 116, 1966, p. 1-111. Zbl0199.20102MR219666
  6. [6] B. Kostant, Quantization and unitary representations, I. Lecture Notes in Math., vol. 170, p. 87-208. Zbl0223.53028MR294568
  7. [7] G.W. Mackey, Induced representations of locally compact groups, I. Ann. of Math., t. 55, 1952, p. 101-130. Zbl0046.11601MR44536
  8. [8] C.C. Moore, Ergodicity of flows on homogeneous spaces. Amer. J. Math., t. 88, 1966, p. 154-178. Zbl0148.37902MR193188
  9. [9] H. Moscovici, Coherent state representations of nilpotent Lie groups. Commun. math. Phys., t. 54, 1977, p. 63-68. Zbl0407.22011MR442152
  10. [10] H. Moscovici et A. Verona, Sur les représentations induites holomorphes d'un groupe de Lie résoluble. C. R. Acad. Sci., Paris, t. 284, 1977, p. 1183-1185. Zbl0367.22012MR437683
  11. [11] G.D. Mostow, Homogeneous spaces with finite invariant measures. Ann. of Math., t. 75, 1962, p. 17-37. Zbl0115.25702
  12. [12] L. Pukanszky, Characters of connected Lie groups. Acta Math., t. 133, 1974, p. 81-137. Zbl0323.22011MR409728
  13. [13] W. Schmid, L2-cohomology and the discrete series. Ann. of Math., t. 103, 1976, p. 375-394. Zbl0333.22009MR396856
  14. [14] D.J. Simms and N.M.J. Woodhouse, Lectures on geometric quantization, Lecture Notes in Physics, vol. 53. Zbl0343.53023
  15. [15] J.A. Wolf, Unitary representations on partially holomorphic cohomology spaces. Memoirs of Amer. Math. Soc., no. 138. Zbl0288.22022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.