Kaehler coherent state orbits for representations of semisimple Lie groups
Annales de l'I.H.P. Physique théorique (1990)
- Volume: 53, Issue: 2, page 245-258
- ISSN: 0246-0211
Access Full Article
topHow to cite
topLisiecki, W.. "Kaehler coherent state orbits for representations of semisimple Lie groups." Annales de l'I.H.P. Physique théorique 53.2 (1990): 245-258. <http://eudml.org/doc/76503>.
@article{Lisiecki1990,
author = {Lisiecki, W.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {connected real Lie group; irreducible unitary representation; Hilbert space; complex orbits; connected semisimple Lie group; highest weight representation; invariant Kähler structure; Kähler coherent state orbits},
language = {eng},
number = {2},
pages = {245-258},
publisher = {Gauthier-Villars},
title = {Kaehler coherent state orbits for representations of semisimple Lie groups},
url = {http://eudml.org/doc/76503},
volume = {53},
year = {1990},
}
TY - JOUR
AU - Lisiecki, W.
TI - Kaehler coherent state orbits for representations of semisimple Lie groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 2
SP - 245
EP - 258
LA - eng
KW - connected real Lie group; irreducible unitary representation; Hilbert space; complex orbits; connected semisimple Lie group; highest weight representation; invariant Kähler structure; Kähler coherent state orbits
UR - http://eudml.org/doc/76503
ER -
References
top- [Bo] A. Borel, Kählerian Coset Spaces of Semisimple Lie Groups, Proc. Nat. Acad. Sci., U.S.A., 1954, Vol. 40, pp. 1147-1151. Zbl0058.16002MR77878
- [DN] J. Dorfmeister and K. Nakajima, The Fundamental Conjecture for Homogeneous Kähler Manifilds, Acta Math., 1988, Vol. 161, pp. 23-70. Zbl0662.32025MR962095
- [EPW] M.G. Eastwood, R. Penrose and R.O. Wells, Cohomology and Massless Fields, Commun. Math. Phys., 1981, Vol. 78, pp. 305-351. Zbl0465.58031MR603497
- [EHW] T. Enright, R. Howe E. and N. Wallach, A Classification of unitary Highest Weight Modules. In: Representation Theory of Reductive Groups. Proceedings, Park City 1982, Prog. Math., 1983, Vol. 40, pp. 97-143. Boston: Birkäuser. Zbl0535.22012MR733809
- [GS] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge, Cambridge University Press, 1986, Zbl0576.58012MR770935
- [Ha] Harish- Chandra, Representations of Semisimple Lie Groups IV, V. Am. J. Math., 1955, Vol. 77, pp. 743-777; 1956, Vol. 78, pp. 1-41. Zbl0066.35603MR72427
- [Ka] H.P. Jakobsen, Hermitian Symmetric Spaces and their Unitary Highest Weight Modules, J. Funct. Anal., 1983, Vol. 52, pp. 385-412. Zbl0517.22014MR712588
- [JaV] H.P. Jakobsen and M. Vergne, Wave and Dirac Operators and Representations of the Conformal Group, J. Funct. Anal., 1977, Vol. 24, pp. 52-106. Zbl0361.22012MR439995
- [Ko] B. Kostant, Quantization and Unitary Representations. In: Lectures in Modern Analysis III, Lect. Notes Math., 1970, Vol. 170, pp. 87-208. Berlin, Heidelberg, New York, Springer. Zbl0223.53028MR294568
- [KoS] B. Kostant and S. Sternberg, Symplectic Projective Orbits, P. J. HILTON and G. S. YOUNG Eds., New Directions in Applied Mathematics. Proceedings, Cleveland 1980, pp. 81-84. Berlin, Heidelberg, New York, Springer1982. Zbl0484.22022MR661285
- [Ma] G. Mack, All Unitary Ray Representations of the Conformal Group SU (2, 2) with Positive Energy, Commun. Math. Phys., 1977, Vol. 55, pp. 1-28. Zbl0352.22012MR447493
- [MZ] D. Montgomery and L. Zippin, Topological Transformation Groups, New York, Wiley, 1955. Zbl0068.01904MR73104
- [MV] H. Moscovici and A. Verona, Coherent States and Square Integrable Representations, Ann. Inst. Henri Poincaré, 1978, Vol. 24, pp. 139-156. Zbl0392.22008MR513686
- [Od] A. Odzijewicz, On Reproducing Kernels and Quantization of States, Commun. Math. Phys., 1988, Vol. 114, pp. 577-597. Zbl0645.53044MR929131
- [OW] H. Ozeki and M. Wakimoto, On Polarizations of Certain Homogeneous Spaces, Hiroshima Math. J., 1972, Vol. 2, pp. 445-482. Zbl0267.22011MR340483
- [Pe1] A.M. Perelomov, Coherent States for Arbitrary Lie Groups, Commun. Math. Phys., 1972, Vol. 26, pp. 222-236. Zbl0243.22016MR363209
- [Pe2] A.M. Perelomov, Generalized Coherent States and their Applications, Berlin, Heidelberg, New York, Springer, 1986. Zbl0605.22013MR899736
- [RSW] J. Rawnsley, W. Schmid and J.A. Wolf, Singular Unitary Representations and Indefinite Harmonic Theory, J. Funct. Anal., 1983, Vol. 51, pp. 1-114. Zbl0511.22005MR699229
- [RRG] D. J RowE, G. Rosensteel and R. Gilmore, Vector coherent state representation theory, J. Math. Phys., 1985, Vol. 26, pp. 2787-2791. Zbl0609.22009MR808492
- [Sch] W. Schmid, Boundary value problems for group invariant differential equations, Élie Cartan et les mathématiques d'aujourd'hui, Proceedings, Lyon 1984, Astérisque, 1985, Numéro Hors Série, pp. 311-322. Zbl0621.22014MR837206
- [SW] S. Sternberg and J.A. Wolf, Hermitian Lie algebras and metaplectic representations, Trans. Am. Math. Soc., 1978, Vol. 238, pp. 1-43. Zbl0386.22010MR486325
- [Tu] G.M. Tuynman, Studies in geometric quantization, Ph. D. Thesis, Amsterdam, 1987.
- [Va] V.S. Varadarajan, Infinitesimal theory of representations of semismple Lie groups, J. A. WOLF, M. CAHEN and M. DE WILDE Eds., Harmonic analysis and representations of semisimple Lie groups, Lect. Notes, Liège1977, pp. 131-255, Dordrecht, Boston, London: D. Reidel1980. Zbl0466.22015
- [VG] E.B. Vinberg and S.G. Gindikin, Kähler manifolds admitting a transitive solvable group of automorphisms, Mat. Sb., 1967, Vol. 74, pp. 357-377. Zbl0153.39903MR224114
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.