Kaehler coherent state orbits for representations of semisimple Lie groups

W. Lisiecki

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 53, Issue: 2, page 245-258
  • ISSN: 0246-0211

How to cite


Lisiecki, W.. "Kaehler coherent state orbits for representations of semisimple Lie groups." Annales de l'I.H.P. Physique théorique 53.2 (1990): 245-258. <http://eudml.org/doc/76503>.

author = {Lisiecki, W.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {connected real Lie group; irreducible unitary representation; Hilbert space; complex orbits; connected semisimple Lie group; highest weight representation; invariant Kähler structure; Kähler coherent state orbits},
language = {eng},
number = {2},
pages = {245-258},
publisher = {Gauthier-Villars},
title = {Kaehler coherent state orbits for representations of semisimple Lie groups},
url = {http://eudml.org/doc/76503},
volume = {53},
year = {1990},

AU - Lisiecki, W.
TI - Kaehler coherent state orbits for representations of semisimple Lie groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 2
SP - 245
EP - 258
LA - eng
KW - connected real Lie group; irreducible unitary representation; Hilbert space; complex orbits; connected semisimple Lie group; highest weight representation; invariant Kähler structure; Kähler coherent state orbits
UR - http://eudml.org/doc/76503
ER -


  1. [Bo] A. Borel, Kählerian Coset Spaces of Semisimple Lie Groups, Proc. Nat. Acad. Sci., U.S.A., 1954, Vol. 40, pp. 1147-1151. Zbl0058.16002MR77878
  2. [DN] J. Dorfmeister and K. Nakajima, The Fundamental Conjecture for Homogeneous Kähler Manifilds, Acta Math., 1988, Vol. 161, pp. 23-70. Zbl0662.32025MR962095
  3. [EPW] M.G. Eastwood, R. Penrose and R.O. Wells, Cohomology and Massless Fields, Commun. Math. Phys., 1981, Vol. 78, pp. 305-351. Zbl0465.58031MR603497
  4. [EHW] T. Enright, R. Howe E. and N. Wallach, A Classification of unitary Highest Weight Modules. In: Representation Theory of Reductive Groups. Proceedings, Park City 1982, Prog. Math., 1983, Vol. 40, pp. 97-143. Boston: Birkäuser. Zbl0535.22012MR733809
  5. [GS] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge, Cambridge University Press, 1986, Zbl0576.58012MR770935
  6. [Ha] Harish- Chandra, Representations of Semisimple Lie Groups IV, V. Am. J. Math., 1955, Vol. 77, pp. 743-777; 1956, Vol. 78, pp. 1-41. Zbl0066.35603MR72427
  7. [Ka] H.P. Jakobsen, Hermitian Symmetric Spaces and their Unitary Highest Weight Modules, J. Funct. Anal., 1983, Vol. 52, pp. 385-412. Zbl0517.22014MR712588
  8. [JaV] H.P. Jakobsen and M. Vergne, Wave and Dirac Operators and Representations of the Conformal Group, J. Funct. Anal., 1977, Vol. 24, pp. 52-106. Zbl0361.22012MR439995
  9. [Ko] B. Kostant, Quantization and Unitary Representations. In: Lectures in Modern Analysis III, Lect. Notes Math., 1970, Vol. 170, pp. 87-208. Berlin, Heidelberg, New York, Springer. Zbl0223.53028MR294568
  10. [KoS] B. Kostant and S. Sternberg, Symplectic Projective Orbits, P. J. HILTON and G. S. YOUNG Eds., New Directions in Applied Mathematics. Proceedings, Cleveland 1980, pp. 81-84. Berlin, Heidelberg, New York, Springer1982. Zbl0484.22022MR661285
  11. [Ma] G. Mack, All Unitary Ray Representations of the Conformal Group SU (2, 2) with Positive Energy, Commun. Math. Phys., 1977, Vol. 55, pp. 1-28. Zbl0352.22012MR447493
  12. [MZ] D. Montgomery and L. Zippin, Topological Transformation Groups, New York, Wiley, 1955. Zbl0068.01904MR73104
  13. [MV] H. Moscovici and A. Verona, Coherent States and Square Integrable Representations, Ann. Inst. Henri Poincaré, 1978, Vol. 24, pp. 139-156. Zbl0392.22008MR513686
  14. [Od] A. Odzijewicz, On Reproducing Kernels and Quantization of States, Commun. Math. Phys., 1988, Vol. 114, pp. 577-597. Zbl0645.53044MR929131
  15. [OW] H. Ozeki and M. Wakimoto, On Polarizations of Certain Homogeneous Spaces, Hiroshima Math. J., 1972, Vol. 2, pp. 445-482. Zbl0267.22011MR340483
  16. [Pe1] A.M. Perelomov, Coherent States for Arbitrary Lie Groups, Commun. Math. Phys., 1972, Vol. 26, pp. 222-236. Zbl0243.22016MR363209
  17. [Pe2] A.M. Perelomov, Generalized Coherent States and their Applications, Berlin, Heidelberg, New York, Springer, 1986. Zbl0605.22013MR899736
  18. [RSW] J. Rawnsley, W. Schmid and J.A. Wolf, Singular Unitary Representations and Indefinite Harmonic Theory, J. Funct. Anal., 1983, Vol. 51, pp. 1-114. Zbl0511.22005MR699229
  19. [RRG] D. J RowE, G. Rosensteel and R. Gilmore, Vector coherent state representation theory, J. Math. Phys., 1985, Vol. 26, pp. 2787-2791. Zbl0609.22009MR808492
  20. [Sch] W. Schmid, Boundary value problems for group invariant differential equations, Élie Cartan et les mathématiques d'aujourd'hui, Proceedings, Lyon 1984, Astérisque, 1985, Numéro Hors Série, pp. 311-322. Zbl0621.22014MR837206
  21. [SW] S. Sternberg and J.A. Wolf, Hermitian Lie algebras and metaplectic representations, Trans. Am. Math. Soc., 1978, Vol. 238, pp. 1-43. Zbl0386.22010MR486325
  22. [Tu] G.M. Tuynman, Studies in geometric quantization, Ph. D. Thesis, Amsterdam, 1987. 
  23. [Va] V.S. Varadarajan, Infinitesimal theory of representations of semismple Lie groups, J. A. WOLF, M. CAHEN and M. DE WILDE Eds., Harmonic analysis and representations of semisimple Lie groups, Lect. Notes, Liège1977, pp. 131-255, Dordrecht, Boston, London: D. Reidel1980. Zbl0466.22015
  24. [VG] E.B. Vinberg and S.G. Gindikin, Kähler manifolds admitting a transitive solvable group of automorphisms, Mat. Sb., 1967, Vol. 74, pp. 357-377. Zbl0153.39903MR224114

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.