The inverse problem at fixed energy for finite range complex potentials

Pierre Sergent; Christiane Coudray

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 29, Issue: 2, page 179-205
  • ISSN: 0246-0211

How to cite

top

Sergent, Pierre, and Coudray, Christiane. "The inverse problem at fixed energy for finite range complex potentials." Annales de l'I.H.P. Physique théorique 29.2 (1978): 179-205. <http://eudml.org/doc/76001>.

@article{Sergent1978,
author = {Sergent, Pierre, Coudray, Christiane},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Scattering Theory; the Iverse Problem; Radial Schrödinger Equation At Fixed Energy; Finite Range Complex Potentials},
language = {eng},
number = {2},
pages = {179-205},
publisher = {Gauthier-Villars},
title = {The inverse problem at fixed energy for finite range complex potentials},
url = {http://eudml.org/doc/76001},
volume = {29},
year = {1978},
}

TY - JOUR
AU - Sergent, Pierre
AU - Coudray, Christiane
TI - The inverse problem at fixed energy for finite range complex potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 179
EP - 205
LA - eng
KW - Scattering Theory; the Iverse Problem; Radial Schrödinger Equation At Fixed Energy; Finite Range Complex Potentials
UR - http://eudml.org/doc/76001
ER -

References

top
  1. [1] A.S. Agranovich and V.A. Marchenko, The inverse problem of scattering theory. English transl., Gordon and Breach, New York, 1963. Zbl0117.06003MR162497
  2. [2] V.E. Ljance, Dokl. Akad. Nauk SSSR, t. 166, 1966, p. 30-33 ; English transl. Soviet Math. Dokl., t. 7, 1966, p. 27-30. MR196533
  3. [3] V.E. Ljance, Mat. Sbornik, t. 72, 1967, p. 114; English transl. Math. USSR Sbornik, t. 1, 1967, p. 485. MR208055
  4. [4] J.J. Loeffel, Ann. Inst. Henri Poincaré, t. A 8, 1968, p. 339. Zbl0159.59804MR237152
  5. [5] M.A. Naimark, Trudy Moskov. Mat. Obshch, t. 3, 1954, p. 181-270; English transl., Amer. Math. Soc. Transl. (2), 1960, p. 16. MR62311
  6. [6] V.E. Ljance, The non self-adjoint differential operator of the second order on the half-axis: Appendix II of : M. A. NAIMARK, Linear differential operators, part II, English transl., Frederick Ungard Publishing Co., New York, 1968. 
  7. [7] R.G. Newton, J. Math. Phys., t. 1, 1960, p. 319. Zbl0090.19303
  8. [8] E. Di Salvo and G.A. Viano, Nuovo Cimento, t. 33 B, 1976, p. 547. MR468797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.