The inverse problem at fixed energy for finite range complex potentials
Pierre Sergent; Christiane Coudray
Annales de l'I.H.P. Physique théorique (1978)
- Volume: 29, Issue: 2, page 179-205
- ISSN: 0246-0211
Access Full Article
topHow to cite
topSergent, Pierre, and Coudray, Christiane. "The inverse problem at fixed energy for finite range complex potentials." Annales de l'I.H.P. Physique théorique 29.2 (1978): 179-205. <http://eudml.org/doc/76001>.
@article{Sergent1978,
author = {Sergent, Pierre, Coudray, Christiane},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Scattering Theory; the Iverse Problem; Radial Schrödinger Equation At Fixed Energy; Finite Range Complex Potentials},
language = {eng},
number = {2},
pages = {179-205},
publisher = {Gauthier-Villars},
title = {The inverse problem at fixed energy for finite range complex potentials},
url = {http://eudml.org/doc/76001},
volume = {29},
year = {1978},
}
TY - JOUR
AU - Sergent, Pierre
AU - Coudray, Christiane
TI - The inverse problem at fixed energy for finite range complex potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 179
EP - 205
LA - eng
KW - Scattering Theory; the Iverse Problem; Radial Schrödinger Equation At Fixed Energy; Finite Range Complex Potentials
UR - http://eudml.org/doc/76001
ER -
References
top- [1] A.S. Agranovich and V.A. Marchenko, The inverse problem of scattering theory. English transl., Gordon and Breach, New York, 1963. Zbl0117.06003MR162497
- [2] V.E. Ljance, Dokl. Akad. Nauk SSSR, t. 166, 1966, p. 30-33 ; English transl. Soviet Math. Dokl., t. 7, 1966, p. 27-30. MR196533
- [3] V.E. Ljance, Mat. Sbornik, t. 72, 1967, p. 114; English transl. Math. USSR Sbornik, t. 1, 1967, p. 485. MR208055
- [4] J.J. Loeffel, Ann. Inst. Henri Poincaré, t. A 8, 1968, p. 339. Zbl0159.59804MR237152
- [5] M.A. Naimark, Trudy Moskov. Mat. Obshch, t. 3, 1954, p. 181-270; English transl., Amer. Math. Soc. Transl. (2), 1960, p. 16. MR62311
- [6] V.E. Ljance, The non self-adjoint differential operator of the second order on the half-axis: Appendix II of : M. A. NAIMARK, Linear differential operators, part II, English transl., Frederick Ungard Publishing Co., New York, 1968.
- [7] R.G. Newton, J. Math. Phys., t. 1, 1960, p. 319. Zbl0090.19303
- [8] E. Di Salvo and G.A. Viano, Nuovo Cimento, t. 33 B, 1976, p. 547. MR468797
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.