Two-channel hamiltonians and the optical model of nuclear scattering

E. B. Davies

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 29, Issue: 4, page 395-413
  • ISSN: 0246-0211

How to cite

top

Davies, E. B.. "Two-channel hamiltonians and the optical model of nuclear scattering." Annales de l'I.H.P. Physique théorique 29.4 (1978): 395-413. <http://eudml.org/doc/76012>.

@article{Davies1978,
author = {Davies, E. B.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {elastic neutron scattering; optical potential; scattering operator},
language = {eng},
number = {4},
pages = {395-413},
publisher = {Gauthier-Villars},
title = {Two-channel hamiltonians and the optical model of nuclear scattering},
url = {http://eudml.org/doc/76012},
volume = {29},
year = {1978},
}

TY - JOUR
AU - Davies, E. B.
TI - Two-channel hamiltonians and the optical model of nuclear scattering
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 4
SP - 395
EP - 413
LA - eng
KW - elastic neutron scattering; optical potential; scattering operator
UR - http://eudml.org/doc/76012
ER -

References

top
  1. [1] M. Combescure and J. Ginibre, Scattering and local absorption for the Schrödinger operator. J. Functional Anal. t. 29, 1978, p. 54-73. Zbl0382.47004MR492958
  2. [2] E.B. Davies, Markovian master equations. Commun. Math. Phys., t. 39, 1974, p. 91-110. Zbl0294.60080MR359633
  3. [3] E.B. Davies, Markovian master equations. II. Math. Ann, t. 219, 1976, p. 147-158. Zbl0323.60061MR395638
  4. [4] E.B. Davies, A model for absorption or decay. Helv. Phys. Acta, t. 48, 1975, p. 365- 382. MR413865
  5. [5] E.B. Davies, Asymptotic analysis for some abstract evolution equations. J. Functional Anal., t. 25, 1977, p. 81-101. Zbl0347.47021MR451031
  6. [6] E.B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right. Commun. Math. Phys., t. 63, 1978, p. 277-301. Zbl0393.34015MR513906
  7. [7] H. Feshbach, Unified theory of nuclear reactions. I. Ann. Phys., t. 5, 1958, p. 357-390. Zbl0083.44202MR116975
  8. [8] H. Feshbach, Unified theory of nuclear reactions. II. Ann. Phys., t. 19, 1962, p. 287- 313. Zbl0116.23202MR141458
  9. [9] C. Goldstein, Perturbation of non-self-adjoint operators. II. Arch. Rat. Mech. Anal., t. 42, 1971, p. 380-402. Zbl0223.47008MR343067
  10. [10] P.E. Hodgson, Nuclear reactions and nuclear structure. Clarendon Press, Oxford, 1971. 
  11. [11] T. Kato, Wave operators and similarity for some non-self-adjoint operators. Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  12. [12] T. Kato, Perturbation theory for linear operators. Springer, 1966. Zbl0148.12601MR203473
  13. [13] Ph.A. Martin, Scattering theory with dissipative interactions and time delayNuovo Cim., t. 30 B, 1975, p. 217-238. MR468891
  14. [14] W.E. Meyerhof, Elements of Nuclear Physics. McGraw-Hill, 1967. 
  15. [15] R.G. Newton, Scattering theory of waves and particles. McGraw-Hill, 1966. MR221823
  16. [16] P.F. Palmer, The singular coupling and weak coupling limits. J. Math. Phys., t. 18, 1977, p. 527-529. MR428997
  17. [17] P.F. Palmer, D. Phil. thesis, Oxford, 1976. 
  18. [18] D. Pearson, A generalisation of the Birman trace theorem. J. Functional Anal. t. 28, 1978, p. 182-186. Zbl0382.47006MR482296
  19. [19] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory. Academic Press, 1979. Zbl0405.47007MR529429
  20. [20] B. Sz.- Nagy and C. Foias, Harmonic analysis of operators on Hilbert space. North-Holland, 1970. Zbl0201.45003MR275190

NotesEmbed ?

top

You must be logged in to post comments.