Two-channel hamiltonians and the optical model of nuclear scattering

E. B. Davies

Annales de l'I.H.P. Physique théorique (1978)

  • Volume: 29, Issue: 4, page 395-413
  • ISSN: 0246-0211

How to cite

top

Davies, E. B.. "Two-channel hamiltonians and the optical model of nuclear scattering." Annales de l'I.H.P. Physique théorique 29.4 (1978): 395-413. <http://eudml.org/doc/76012>.

@article{Davies1978,
author = {Davies, E. B.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {elastic neutron scattering; optical potential; scattering operator},
language = {eng},
number = {4},
pages = {395-413},
publisher = {Gauthier-Villars},
title = {Two-channel hamiltonians and the optical model of nuclear scattering},
url = {http://eudml.org/doc/76012},
volume = {29},
year = {1978},
}

TY - JOUR
AU - Davies, E. B.
TI - Two-channel hamiltonians and the optical model of nuclear scattering
JO - Annales de l'I.H.P. Physique théorique
PY - 1978
PB - Gauthier-Villars
VL - 29
IS - 4
SP - 395
EP - 413
LA - eng
KW - elastic neutron scattering; optical potential; scattering operator
UR - http://eudml.org/doc/76012
ER -

References

top
  1. [1] M. Combescure and J. Ginibre, Scattering and local absorption for the Schrödinger operator. J. Functional Anal. t. 29, 1978, p. 54-73. Zbl0382.47004MR492958
  2. [2] E.B. Davies, Markovian master equations. Commun. Math. Phys., t. 39, 1974, p. 91-110. Zbl0294.60080MR359633
  3. [3] E.B. Davies, Markovian master equations. II. Math. Ann, t. 219, 1976, p. 147-158. Zbl0323.60061MR395638
  4. [4] E.B. Davies, A model for absorption or decay. Helv. Phys. Acta, t. 48, 1975, p. 365- 382. MR413865
  5. [5] E.B. Davies, Asymptotic analysis for some abstract evolution equations. J. Functional Anal., t. 25, 1977, p. 81-101. Zbl0347.47021MR451031
  6. [6] E.B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right. Commun. Math. Phys., t. 63, 1978, p. 277-301. Zbl0393.34015MR513906
  7. [7] H. Feshbach, Unified theory of nuclear reactions. I. Ann. Phys., t. 5, 1958, p. 357-390. Zbl0083.44202MR116975
  8. [8] H. Feshbach, Unified theory of nuclear reactions. II. Ann. Phys., t. 19, 1962, p. 287- 313. Zbl0116.23202MR141458
  9. [9] C. Goldstein, Perturbation of non-self-adjoint operators. II. Arch. Rat. Mech. Anal., t. 42, 1971, p. 380-402. Zbl0223.47008MR343067
  10. [10] P.E. Hodgson, Nuclear reactions and nuclear structure. Clarendon Press, Oxford, 1971. 
  11. [11] T. Kato, Wave operators and similarity for some non-self-adjoint operators. Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  12. [12] T. Kato, Perturbation theory for linear operators. Springer, 1966. Zbl0148.12601MR203473
  13. [13] Ph.A. Martin, Scattering theory with dissipative interactions and time delayNuovo Cim., t. 30 B, 1975, p. 217-238. MR468891
  14. [14] W.E. Meyerhof, Elements of Nuclear Physics. McGraw-Hill, 1967. 
  15. [15] R.G. Newton, Scattering theory of waves and particles. McGraw-Hill, 1966. MR221823
  16. [16] P.F. Palmer, The singular coupling and weak coupling limits. J. Math. Phys., t. 18, 1977, p. 527-529. MR428997
  17. [17] P.F. Palmer, D. Phil. thesis, Oxford, 1976. 
  18. [18] D. Pearson, A generalisation of the Birman trace theorem. J. Functional Anal. t. 28, 1978, p. 182-186. Zbl0382.47006MR482296
  19. [19] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory. Academic Press, 1979. Zbl0405.47007MR529429
  20. [20] B. Sz.- Nagy and C. Foias, Harmonic analysis of operators on Hilbert space. North-Holland, 1970. Zbl0201.45003MR275190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.