A tauberian theorem in quantum mechanical inverse scattering theory
We study the theory of scattering for the Hartree equation with long range potentials. We prove the existence of modified wave operators with no size restriction on the data and we determine the asymptotic behaviour in time of solutions in the range of the wave operators.
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.
In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.