The Yukawa quantum field theory : linear N τ bound, locally Fock property

Edward P. Osipov

Annales de l'I.H.P. Physique théorique (1979)

  • Volume: 30, Issue: 3, page 159-192
  • ISSN: 0246-0211

How to cite

top

Osipov, Edward P.. "The Yukawa quantum field theory : linear $N_\tau $ bound, locally Fock property." Annales de l'I.H.P. Physique théorique 30.3 (1979): 159-192. <http://eudml.org/doc/76026>.

@article{Osipov1979,
author = {Osipov, Edward P.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {159-192},
publisher = {Gauthier-Villars},
title = {The Yukawa quantum field theory : linear $N_\tau $ bound, locally Fock property},
url = {http://eudml.org/doc/76026},
volume = {30},
year = {1979},
}

TY - JOUR
AU - Osipov, Edward P.
TI - The Yukawa quantum field theory : linear $N_\tau $ bound, locally Fock property
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 30
IS - 3
SP - 159
EP - 192
LA - eng
UR - http://eudml.org/doc/76026
ER -

References

top
  1. [1] J. Glimm and A. Jaffe, The λφ42 Quantum Field Theory without cut-offs. III. The Physical Vacuum, Acta Math., t. 125, 1970, p. 203-260. MR269234
  2. [2] J. Glimm and A. Jaffe, Quantum Field Models, in Statistical Mechanics and Quantum Field Theory, Les Houches, 1970, ed. C. De Witt and R. Stora, Gordon and Breach, New York, 1971, p. 1-108. 
  3. [3] R. Schrader, Yukawa quantum field theory in two space-time dimensions without cut-offs, Ann. Phys. (N. Y.), t. 70, 1972, p. 412-457. MR302088
  4. [4] E. Seiler and B. Simon, Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, hamiltonian bound and linear lower bound, Commun. Math. Phys., t. 45, 1975, p. 99-114. MR413886
  5. [5] E. Seiler and B. Simon, Nelson's symmetry and all that in the Yukawa2 and ø43 field theories, Ann. Phys. (N. Y.), t. 97, 1976, p. 470-518. MR438960
  6. [6] J. Magnen and R. Seneor, The Wightman axioms for the weakly coupled Yukawa model in two dimensions, Commun. Math. Phys., t. 51, 1976, p. 297-313; Preprint de l'École Polytechnique, octobre 1975. MR434224
  7. [7] J. Glimm and A. Jaffe, The energy-momentum spectrum and vacuum expectation values in quantum field theory, II, Commun. Math. Phys., t. 22, 1971, p. 1-22. MR295709
  8. [8] P.T. Matthews and A. Salam, The Green's functions of quantized fields, Nuovo Cimento, t. 12, 1954, p. 563-565. Zbl0056.44306
  9. [9] P.T. Matthews and A. Salam, Propagators of quantized fields, Nuovo Cimento, t. 2, 1955, p. 120-134. Zbl0067.44801MR75096
  10. [10] E. Seiler, Schwinger functions for the Yukawa model in two dimensions with space–time cutoff, Commun. Math. Phys., t. 42, 1975, p. 163-182. MR376022
  11. [11] E. Seiler and B. Simon, On finite mass renormalizations in the two-dimensional Yukawa model, J. Math. Phys., t. 16, 1975, p. 2289-2293. MR403484
  12. [12] J. Dimock and J. Glimm, Measures on the Schwartz distribution space and application to P(φ)2 field theories, Adv. Math., t. 12, 1974, p. 58-83. Zbl0313.28015MR349171
  13. [13] O.A. Mcbryan, Volume dependence of Schwinger functions in the Yukawa2 quantum field theory, Commun. Math. Phys., t. 45, 1975, p. 279-294. MR389075
  14. [14] B. Simon, The P(φ)2 euclidean (quantum) field theory, Princeton University Press, 1974. MR489552
  15. [15] G.M. Molchan, The characterization of gaussian fields with the Markov property (in Russian), Dokladi AN SSSR, t. 197, 1971, p. 784-787. Zbl0236.60031MR297018
  16. [16] I.M. Gelfand and G.E. Shilov, Generalized functions and their applications. vol. I (In Russian), Fizmatgiz, Moscow, 1959. 
  17. [17] J. Glimm, A. Jaffe and T. Spencer, The particle structure of the weakly coupled P(φ)2 model and other applications of high temperature expansions. Part II. In Constructive quantum field theory, ed. G. Velo and A. S. Wightman, Lecture Notes in Physics, vol. 25, Springer-Verlag, Berlin-Heidelberg-New York, 1973. MR395513
  18. [18] I.C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators (In Russian), Nauka, Moscow, 1965 and Translations of mathematical monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. Zbl0181.13504MR246142
  19. [19] T. Kato, Perturbation theory for linear operators, Springer, Berlin-Heidelberg- New York, 1966. Zbl0148.12601MR203473
  20. [20] J. Glimm and A. Jaffe, The λ(φ)4)2 quantum field theory without cutoffs. IV. Perturbation of the hamiltonian, J. Math. Phys., t. 13, 1972, p. 1568-1584. MR317683
  21. [21] N. Dunford and J. Schwartz, Linear Operators, vol. II, Interscience, New York, 1963. Zbl0128.34803MR188745
  22. [22] A. Cooper and L. Rosen, The weakly coupled Yukawa2 field theory: cluster expansion and Wightman axioms, Trans. Amer. Math. Soc., t. 234, 1977, p. 1-88. MR468872
  23. [23] L. Rosen, Construction of the Yukawa2 field theory with a large external field, J. Math. Phys., t. 18, 1977, p. 894-897. MR441147
  24. [24] E.P. Osipov, Connection between the spectrum condition and the Lorentz invariance of the Yukawa2 quantum field theory, Commun. Math. Phys., t. 57, 1977, p. 111-116. MR503217
  25. [25] B. Simon, Notes on infinite determinants of Hilbert space operators, Adv. Math., t. 24, 1977, p. 244-273. Zbl0353.47008MR482328
  26. [26] L. Gross, On the formula of Matthews and Salam, J. Funct. Anal., t. 25, 1977, p. 162-209. Zbl0414.47010MR459403
  27. [27] E.P. Heifets and E.P. Osipov, The energy-momentum spectrum in the Yukawa2 quantum field theory, Commun. Math. Phys., t. 57, 1977, p. 31-50. MR462337
  28. [28] E.P. Osipov, The Yukawa2 quantum field theory: linear Nτ bound, locally Fock property, Preprint TPh-95, Institute for mathematics, Novosibirsk, 1977 and Ann. Inst. H. Poincaré, t. 30A, 1979, p. 193-206. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.