The Yukawa quantum field theory : the Matthews-Salam formulas

Edward P. Osipov

Annales de l'I.H.P. Physique théorique (1979)

  • Volume: 30, Issue: 3, page 193-206
  • ISSN: 0246-0211

How to cite

top

Osipov, Edward P.. "The Yukawa quantum field theory : the Matthews-Salam formulas." Annales de l'I.H.P. Physique théorique 30.3 (1979): 193-206. <http://eudml.org/doc/76027>.

@article{Osipov1979,
author = {Osipov, Edward P.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {3},
pages = {193-206},
publisher = {Gauthier-Villars},
title = {The Yukawa quantum field theory : the Matthews-Salam formulas},
url = {http://eudml.org/doc/76027},
volume = {30},
year = {1979},
}

TY - JOUR
AU - Osipov, Edward P.
TI - The Yukawa quantum field theory : the Matthews-Salam formulas
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 30
IS - 3
SP - 193
EP - 206
LA - eng
UR - http://eudml.org/doc/76027
ER -

References

top
  1. [1] P.T. Matthews and A. Salam, The Green's functions of quantized fields, Nuovo Cimento, t. 12, 1954, p. 563-565. Zbl0056.44306
  2. [2] P.T. Matthews and A. Salam, Propagators of quantized fields, Nuovo Cimento, t. 2, 1955, p. 120-134. Zbl0067.44801MR75096
  3. [3] N.N. Bogolubov, On the representation of the Green-Schwinger functions with the help of the functional integrals (in Russian), Doklady Akad. Nauk SSSR, t. 99, 1954, p. 225-226. Zbl0056.22105MR67768
  4. [4] N.N. Bogolubov and D.V. Shirkov, Introduction to the theory of quantized fields, Interscience Publishers, New York, 1959. Zbl0088.21701MR110471
  5. [5] J. Glimm and A. Jaffe, Quantum field models, in Statistical mechanics and quantum field theory, Les Houches, 1970, ed. by C. De Witt and R. Stora, Gordon and Breach, New York, 1971, p. 1-108. 
  6. [6] R. Schrader, Yukawa quantum field theory in two space-time dimensions without cut-offs, Ann. Phys. (N. Y.), t. 70, 1972, p. 412-457. MR302088
  7. [7] E. Seiler, Schwinger functions for the Yukawa model in two dimensions with space–time cut-off, Commun. Math. Phys., t. 42, 1975, p. 163-182. MR376022
  8. [8] E. Seiler and B. Simon, Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound, Commun. Math. Phys., t. 45, 1975, p. 99-114. MR413886
  9. [9] O.A. Mcbryan, Volume dependence of Schwinger functions in the Yukawa2 quantum field theory, Commun. Math. Phys., t. 45, 1975, p. 279-294. MR389075
  10. [10] D. Brydges, Boundedness below for fermion model theories. Part I, J. Math. Phys., t. 16, 1975, p. 1649-1661. MR376009
  11. [11] D. Brydges, Boundedness below for fermion model theories. Part II. The linear lower bound, Commun. Math. Phys., t. 47, 1976, p. 1-24. MR406193
  12. [12] E. Seiler and B. Simon, Nelson's symmetry and all that in the Yukawa2 and φ43 field theories, Ann. Phys. (N. Y.), t. 97, 1976, p. 470-518. MR438960
  13. [13] J. Magnen and R. Seneor, The Wightman axioms for the weakly coupled Yukawa model in two dimensions, Commun. Math. Phys., t. 51, 1976, p. 297-313. MR434224
  14. [14] A. Cooper and L. Rosen, The weakly coupled Yukawa2 field theory: cluster expansion and Wightman axioms, Trans. Amer. Math. Soc., t. 234, 1977, p. 1-88. MR468872
  15. [15] L. Rosen, Construction of the Yukawa2 field theory with a large external fieldJ. Math. Phys., t. 18, 1977, p. 894-897. MR441147
  16. [16] L. Gross, On the formula of Matthews and Salam, J. Funct. Anal., t. 25, 1977, p. 162-209. Zbl0414.47010MR459403
  17. [17] E.P. Osipov, The Yukawa2 quantum field theory: linear Nτ bound, locally Fock property, Ann. Inst. H. Poincaré, t. 30A, 1979, p. 159-192. 
  18. [18] E.P. Osipov, The Yukawa2 quantum field theory: various results (in Russian), Preprint TPh-99, Institute for Mathematics, Novosibirsk, 1978. 
  19. [19] X. Fernique, Intégrabilité des vecteurs gaussiens, C. R. Acad. Sci. Paris Sér. A, t. 270, 1970, p. 1698-1699. Zbl0206.19002MR266263
  20. [20] X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, in École d'Été de Probabilités de Saint-Flour, IV. 1974, édité par P.-L. Hennequin, Lecture Notes in Mathematics, 480, Springer-Verlag, Berlin, Heidelberg, New York, 1975, p. 2-97. Zbl0331.60025MR413238
  21. [21] B. Simon, The P(φ)2 Euclidean (quantum) field theory, Princeton University Press, Princeton, 1974. MR489552
  22. [22] G.M. Molchan, The characterization of Gaussian fields with the Markov property (in Russian), Doklady Akad. Nauk SSSR, t. 197, 1971, p. 784-787. Zbl0236.60031MR297018
  23. [23] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966. Zbl0148.12601MR203473
  24. [24] B. Simon, Notes on infinite determinants of Hilbert space operators, Adv. Math., t. 24, 1977, p. 244-273. Zbl0353.47008MR482328

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.