On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer

G. A. Viano

Annales de l'I.H.P. Physique théorique (1980)

  • Volume: 32, Issue: 2, page 109-123
  • ISSN: 0246-0211

How to cite

top

Viano, G. A.. "On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer." Annales de l'I.H.P. Physique théorique 32.2 (1980): 109-123. <http://eudml.org/doc/76064>.

@article{Viano1980,
author = {Viano, G. A.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {109-123},
publisher = {Gauthier-Villars},
title = {On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer},
url = {http://eudml.org/doc/76064},
volume = {32},
year = {1980},
}

TY - JOUR
AU - Viano, G. A.
TI - On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer
JO - Annales de l'I.H.P. Physique théorique
PY - 1980
PB - Gauthier-Villars
VL - 32
IS - 2
SP - 109
EP - 123
LA - eng
UR - http://eudml.org/doc/76064
ER -

References

top
  1. [1] H. Furstenberg, Translation, Invariant Cones of Functions on Semi-Simple Lie Groups. Bulletin American Math. Soc., t. 71, 1965, p. 271. Zbl0178.16901MR177062
  2. [2] C. Crönstrom and W.H. Klink, Generalized O(1, 2), Expansions of Multiparticle Amplitudes. Annals of Physics, t. 69, 1972, p. 218. 
  3. [3] W. Rühl, A Convolution Integral for Fourier Transforms on the Group SL(2, C), Communications Math. Phys., t. 10, 1968, p. 199. Zbl0162.58603MR259030
  4. [4] W. Rühl, The Lorentz Group and Harmonic Analysis, New York, Benjamin, 1970. Zbl0249.43017MR274663
  5. [5] H.D.I. Abarbanel and L.M. Saunders, Laplace Transforms and the Diagonalization of Bethe-Salpeter Equations for Absorptive Parts, Phys. Rev., D2, 1970, p. 711. Zbl0197.26103MR317682
  6. [6] H.D.I. Abarbanel and L.M. Saunders, Partial Diagonalization of Absorptive Part Equations by Laplace Transforms, Annals of Physics, t. 64, 1971, p. 254. Zbl0209.13301MR289065
  7. [7] C.E. Jones, F.E. Low and J.E. Young, Generalized O(2, 1), Expansion for Asymptotically Growing Amplitudes. Annals of Physics, t. 63, 1971, p. 476. MR281422
  8. [8] C.E. Jones, F.E. Low and J.E. Young, Generalized O(2, 1) Expansions for Asymptotically Growing Amplitudes II Space, Time Région. Annals of Physics, t. 70, 1972, p. 286. MR290669
  9. [9] C. Crönstrom, Generalized O(1, 2) Expansions of Multiparticle Amplitudes. The O(1,2) Laplace Transform. Annals of Physics, t. 78, 1973, p. 340. 
  10. [10] C. Crönstrom, O(1,2) Partial Diagonalization of Bethe-Salpeter Type Equations. Annals of Physics, t. 92, 1975, p. 262. MR389052
  11. [11] G.A. Viano, On the Geometrical Interpretation of the Harmonic Analysis of the Scattering Amplitude. Comm. Math. Phys., t. 26, 1972, p. 290. MR311225
  12. [12] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, New York, WileyInterscience Publishers, 1971, p. 383. Zbl0195.10401MR285849
  13. [13] N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence Rhode Island, 1968. Zbl0172.18404MR229863
  14. [14] S. Helgason, a) Differential Geometry and Symmetric Spaces, New York, Academic Press, 1962, p. 405. b) Lie Groups and Symmetric Spaces. Battelle Rencontres (C. M. De Witt and J. A. Wheeler Editors), New York, Benjamin, 1968, p. 1. c) Harmonic Analysis in the Non-Euclidean Disk, Conference on Harmonic Analysis, Lecture Notes in Mathematics, Springer Verlag, 1971, p. 151. d) Functions on Symmetric Spaces, in Proceedings of Symposia in Pure Mathematics, vol. XXVI, 1973, p. 101. e) A duality for Symmetric Spaces with Applications to Group Representations. Advances in Mathematics, t. 5, 1970, p. 1. Zbl0111.18101MR145455
  15. [15] R. Nevanlinna, Analytic Functions, Springer, 1970, p. 7. Zbl0199.12501MR279280
  16. [16] A. Erdelyi et al., Higher Transcendental Functions (Batemann Manuscript Project), vol. I, Chapter III. New York, Mc Graw Hill. Zbl0051.30303
  17. [17] H. Joss, Complex Angular Momentum and the Representations of the Poincaré Group with Space-Like Momentum. Lectures in Theoretical Physics (Boulder Summer School), VII A, 1964, p. 132. 
  18. [18] F.T. Hadjioannou, On the Use of the Imaginary-Mass Representations of the Poincaré Group in Scattering Amplitudes. Nuovo Cimento, XLIV A, no. 1, 1966, p. 185. 
  19. [19] I.M. Gel'fand, M.I. Graev and N. Ya Vilenkin, Generalized Functions, Academic Press, vol. 5, 1966, p. 4. Zbl0144.17202
  20. [20] V.N. Gribov, Partial Waves with Complex Angular Momenta and the Asymptotic Behaviour of the Scattering Amplitude. J. Exp. Theor. Phys., t. 14, 1962, p. 1395. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.