Spherical functions on ordered symmetric spaces

Jacques Faraut; Joachim Hilgert; Gestur Ólafsson

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 927-965
  • ISSN: 0373-0956

Abstract

top
We define on an ordered semi simple symmetric space a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when is a complex group, a real form of , and when is a symmetric space of rank one.

How to cite

top

Faraut, Jacques, Hilgert, Joachim, and Ólafsson, Gestur. "Spherical functions on ordered symmetric spaces." Annales de l'institut Fourier 44.3 (1994): 927-965. <http://eudml.org/doc/75085>.

@article{Faraut1994,
abstract = {We define on an ordered semi simple symmetric space $\{\cal M\}=G/H$ a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when $G$ is a complex group, $H$ a real form of $G$, and when $\{\cal M\}$ is a symmetric space of rank one.},
author = {Faraut, Jacques, Hilgert, Joachim, Ólafsson, Gestur},
journal = {Annales de l'institut Fourier},
keywords = {ordered semisimple symmetric space; spherical functions; Harish-Chandra integral formula; Riemannian symmetric space; spherical Laplace transform},
language = {eng},
number = {3},
pages = {927-965},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spherical functions on ordered symmetric spaces},
url = {http://eudml.org/doc/75085},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Faraut, Jacques
AU - Hilgert, Joachim
AU - Ólafsson, Gestur
TI - Spherical functions on ordered symmetric spaces
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 927
EP - 965
AB - We define on an ordered semi simple symmetric space ${\cal M}=G/H$ a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when $G$ is a complex group, $H$ a real form of $G$, and when ${\cal M}$ is a symmetric space of rank one.
LA - eng
KW - ordered semisimple symmetric space; spherical functions; Harish-Chandra integral formula; Riemannian symmetric space; spherical Laplace transform
UR - http://eudml.org/doc/75085
ER -

References

top
  1. [Ba88] E. van den BAN, The principal series for a reductive symmetric space I. H-fixed distribution vectors, Ann. Sci. E.N.S., 21 (1988), 359-412. Zbl0714.22009MR90a:22016
  2. [CK72] C. CRONSTRÖM, and W.H. KLINKGeneralized O (1,2) expansions of multiparticle amplitudes, Annals of Physics, 69 (1972), 218-278. 
  3. [De90] P. DELORME, Coefficients généralisés de séries principales sphériques et distributions sphériques sur Gℂ/Gℝ, Invent. Math., 105 (1991), 305-346. Zbl0741.43010MR92j:22027
  4. [Er53a] A. ERDELYI, et. al., Higher transcendental functions I, Mc Graw-Hill, New York, 1953. Zbl0052.29502MR15,419i
  5. [Er53b] A. ERDELYI, et al., Higher transcendental functions II, Mc Graw-Hill, New York, 1953. Zbl0052.29502MR15,419i
  6. [Fa87] J. FARAUT, Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symétriques ordonnés, Symp. Math., 29 (1987), 183-196. Zbl0656.43003MR90e:43006
  7. [Fa91] J. FARAUT, Espaces symétriques ordonnés et algèbres de Volterra, J. Math. Soc. Japan, 43 (1991), 133-147. Zbl0732.43005MR92d:22019
  8. [FV86] J. FARAUT, and G.A. VIANO, Volterra algebra and the Bethe-Salpeter equation, J. Math. Phys., 27 (1986), 840-848. Zbl0586.45004MR87c:81090
  9. [He78] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978. Zbl0451.53038MR80k:53081
  10. [He84] S. HELGASON, Groups and Geometric Analysis, Academic Press, New York/London, 1984. Zbl0543.58001
  11. [KnZu82] A.W. KNAPP, and J. ZUCKERMAN, Classification of irreducible tempered representations of semisimple groups, Ann. of Math., 116 (1982), 389-455. Zbl0516.22011MR84h:22034a
  12. [La89] J.D. LAWSON, Ordered manifolds, invariant cone fields, and semigroups, Forum Math., 1 (1989), 273-308. Zbl0672.53041MR90i:22014
  13. [Mi83] M. MIZONY, Une transformation de Laplace-Jacobi, SIAM J. Math., 14 (1983), 987-1003. Zbl0519.44003MR85e:44002
  14. [Ne91] K.H. NEEB, A convexity theorem for semisimple symmetric spaces, to appear in Pac. J. Math. Zbl0809.53058
  15. [Óla85] G. ÓLAFSSON, Integral formulas and induced representations associated to an affine symmetric space, Math. Gotting., 33 (1985). 
  16. [Óla87] G. ÓLAFSSON, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math., 90 (1987), 605-629. Zbl0665.43004MR89d:43011
  17. [Óla90] G. ÓLAFSSON, Causal symmetric spaces, Math. Gotting., 15 (1990). 
  18. [ÓH92] G. ÓLAFSSON, and J. HILGERT, Causal symmetric spaces, book in preparation. 
  19. [Ol81] G. I. OL'SHANSKII, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funct. Anal. and Appl., 15 (1981), 275-285. Zbl0503.22011MR83e:32032
  20. [Ol82] G. I. OL'SHANSKII, Convex cones in symmetric Lie algebras, Lie semigroups, and invariant causal (order) structures on pseudo-Riemannian symmetric spaces, Sov. Math. Dokl., 26 (1982), 97-101. Zbl0512.22012
  21. [Vi80] G.A. VIANO, On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer, Ann. Inst. H. Poincaré, A, 32 (1980), 109-123. 
  22. [Wo72] J. WOLF, The fine structure of Hermitean symmetric spaces, in Symmetric spaces, Boothby and Weiss ed., Marcel Dekker, New York, (1972). Zbl0257.32014

NotesEmbed ?

top

You must be logged in to post comments.