Spherical functions on ordered symmetric spaces

Jacques Faraut; Joachim Hilgert; Gestur Ólafsson

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 927-965
  • ISSN: 0373-0956

Abstract

top
We define on an ordered semi simple symmetric space = G / H a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when G is a complex group, H a real form of G , and when is a symmetric space of rank one.

How to cite

top

Faraut, Jacques, Hilgert, Joachim, and Ólafsson, Gestur. "Spherical functions on ordered symmetric spaces." Annales de l'institut Fourier 44.3 (1994): 927-965. <http://eudml.org/doc/75085>.

@article{Faraut1994,
abstract = {We define on an ordered semi simple symmetric space $\{\cal M\}=G/H$ a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when $G$ is a complex group, $H$ a real form of $G$, and when $\{\cal M\}$ is a symmetric space of rank one.},
author = {Faraut, Jacques, Hilgert, Joachim, Ólafsson, Gestur},
journal = {Annales de l'institut Fourier},
keywords = {ordered semisimple symmetric space; spherical functions; Harish-Chandra integral formula; Riemannian symmetric space; spherical Laplace transform},
language = {eng},
number = {3},
pages = {927-965},
publisher = {Association des Annales de l'Institut Fourier},
title = {Spherical functions on ordered symmetric spaces},
url = {http://eudml.org/doc/75085},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Faraut, Jacques
AU - Hilgert, Joachim
AU - Ólafsson, Gestur
TI - Spherical functions on ordered symmetric spaces
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 927
EP - 965
AB - We define on an ordered semi simple symmetric space ${\cal M}=G/H$ a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when $G$ is a complex group, $H$ a real form of $G$, and when ${\cal M}$ is a symmetric space of rank one.
LA - eng
KW - ordered semisimple symmetric space; spherical functions; Harish-Chandra integral formula; Riemannian symmetric space; spherical Laplace transform
UR - http://eudml.org/doc/75085
ER -

References

top
  1. [Ba88] E. van den BAN, The principal series for a reductive symmetric space I. H-fixed distribution vectors, Ann. Sci. E.N.S., 21 (1988), 359-412. Zbl0714.22009MR90a:22016
  2. [CK72] C. CRONSTRÖM, and W.H. KLINKGeneralized O (1,2) expansions of multiparticle amplitudes, Annals of Physics, 69 (1972), 218-278. 
  3. [De90] P. DELORME, Coefficients généralisés de séries principales sphériques et distributions sphériques sur Gℂ/Gℝ, Invent. Math., 105 (1991), 305-346. Zbl0741.43010MR92j:22027
  4. [Er53a] A. ERDELYI, et. al., Higher transcendental functions I, Mc Graw-Hill, New York, 1953. Zbl0052.29502MR15,419i
  5. [Er53b] A. ERDELYI, et al., Higher transcendental functions II, Mc Graw-Hill, New York, 1953. Zbl0052.29502MR15,419i
  6. [Fa87] J. FARAUT, Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symétriques ordonnés, Symp. Math., 29 (1987), 183-196. Zbl0656.43003MR90e:43006
  7. [Fa91] J. FARAUT, Espaces symétriques ordonnés et algèbres de Volterra, J. Math. Soc. Japan, 43 (1991), 133-147. Zbl0732.43005MR92d:22019
  8. [FV86] J. FARAUT, and G.A. VIANO, Volterra algebra and the Bethe-Salpeter equation, J. Math. Phys., 27 (1986), 840-848. Zbl0586.45004MR87c:81090
  9. [He78] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978. Zbl0451.53038MR80k:53081
  10. [He84] S. HELGASON, Groups and Geometric Analysis, Academic Press, New York/London, 1984. Zbl0543.58001
  11. [KnZu82] A.W. KNAPP, and J. ZUCKERMAN, Classification of irreducible tempered representations of semisimple groups, Ann. of Math., 116 (1982), 389-455. Zbl0516.22011MR84h:22034a
  12. [La89] J.D. LAWSON, Ordered manifolds, invariant cone fields, and semigroups, Forum Math., 1 (1989), 273-308. Zbl0672.53041MR90i:22014
  13. [Mi83] M. MIZONY, Une transformation de Laplace-Jacobi, SIAM J. Math., 14 (1983), 987-1003. Zbl0519.44003MR85e:44002
  14. [Ne91] K.H. NEEB, A convexity theorem for semisimple symmetric spaces, to appear in Pac. J. Math. Zbl0809.53058
  15. [Óla85] G. ÓLAFSSON, Integral formulas and induced representations associated to an affine symmetric space, Math. Gotting., 33 (1985). 
  16. [Óla87] G. ÓLAFSSON, Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math., 90 (1987), 605-629. Zbl0665.43004MR89d:43011
  17. [Óla90] G. ÓLAFSSON, Causal symmetric spaces, Math. Gotting., 15 (1990). 
  18. [ÓH92] G. ÓLAFSSON, and J. HILGERT, Causal symmetric spaces, book in preparation. 
  19. [Ol81] G. I. OL'SHANSKII, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funct. Anal. and Appl., 15 (1981), 275-285. Zbl0503.22011MR83e:32032
  20. [Ol82] G. I. OL'SHANSKII, Convex cones in symmetric Lie algebras, Lie semigroups, and invariant causal (order) structures on pseudo-Riemannian symmetric spaces, Sov. Math. Dokl., 26 (1982), 97-101. Zbl0512.22012
  21. [Vi80] G.A. VIANO, On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer, Ann. Inst. H. Poincaré, A, 32 (1980), 109-123. 
  22. [Wo72] J. WOLF, The fine structure of Hermitean symmetric spaces, in Symmetric spaces, Boothby and Weiss ed., Marcel Dekker, New York, (1972). Zbl0257.32014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.