The structure of the space of solutions of Einstein's equations. I. One Killing field

Arthur E. Fischer; Jerrold E. Marsden; Vincent Moncrief

Annales de l'I.H.P. Physique théorique (1980)

  • Volume: 33, Issue: 2, page 147-194
  • ISSN: 0246-0211

How to cite

top

Fischer, Arthur E., Marsden, Jerrold E., and Moncrief, Vincent. "The structure of the space of solutions of Einstein's equations. I. One Killing field." Annales de l'I.H.P. Physique théorique 33.2 (1980): 147-194. <http://eudml.org/doc/76090>.

@article{Fischer1980,
author = {Fischer, Arthur E., Marsden, Jerrold E., Moncrief, Vincent},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Einstein equations; space of solutions; Killing vectors; singularities},
language = {eng},
number = {2},
pages = {147-194},
publisher = {Gauthier-Villars},
title = {The structure of the space of solutions of Einstein's equations. I. One Killing field},
url = {http://eudml.org/doc/76090},
volume = {33},
year = {1980},
}

TY - JOUR
AU - Fischer, Arthur E.
AU - Marsden, Jerrold E.
AU - Moncrief, Vincent
TI - The structure of the space of solutions of Einstein's equations. I. One Killing field
JO - Annales de l'I.H.P. Physique théorique
PY - 1980
PB - Gauthier-Villars
VL - 33
IS - 2
SP - 147
EP - 194
LA - eng
KW - Einstein equations; space of solutions; Killing vectors; singularities
UR - http://eudml.org/doc/76090
ER -

References

top
  1. R. Abraham and J. Marsden, Foundations of Mechanics, 2nd edition, Benjamin/Cummings, Reading, Massachusetts, 1978. Zbl0393.70001MR515141
  2. J. Arms, Linearization stability of the Einstein-Maxwell system. J. Math. Phys., t. 18, 1977, p. 830-833. MR446295
  3. J. Arms, On coupled gravitational and gauge fields. J. Math. Phys., t. 20, 1979, p. 443-453. MR525105
  4. J. Arms and J. Marsden, The absence of Killing vector fields is necessary for linearization stability of Einstein's equations. Indiana Univ. Math. J., t. 28, 1979, p. 119-125. Zbl0405.53046MR523627
  5. M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Diff. Geom., t. 3, 1969, p. 379-392. Zbl0194.53103MR266084
  6. J. Bourgnion, D. Ebin and J. Marsden, Sur le noyau des opérateurs pseudo-différentiels a symbole surjective et non-injective. C. R. Acad. Sci., t. 282, 1976, p. 867-870. Zbl0323.58020
  7. D. Brill and S. Deser, Instability of closed spaces in general relativity. Comm. Math. Phys., t. 32, 1973, p. 291-304. Zbl0263.53042MR329548
  8. M. Buchner, J. Marsden and S. Schechter, Differential topology and singularity theory in the solution of nonlinear equations (to appear), 1979. 
  9. R. Budic, J. Isenberg, L. Lindblom and P. Yasskin, On the determination of Cauchy surfaces from intrinsic properties. Comm. Math. Phys., t. 61, 1977, p. 87-93. Zbl0403.53030MR489695
  10. Y. Choquet-Bruhat, A. Fischer and J. Marsden, Maximal hypersurfaces and positivity of mass, in Proceedings of the International School of Physics « Enrico Fermi », Course LXVII, Isolated Gravitating Systems in General Relativity, ed. J. Ehlers, North Holland Publishing Company, Amsterdam, New York. 
  11. B. Coll, Sur la stabilité linéaire des équations d'Einstein du vide. C. R. Acad. Sci. Paris, t. 282, 1976, p. 247-250. Zbl0322.35055MR401037
  12. D. Ebin, On the space of Riemannian metrics. Symp. Pure Math. Amer. Math. Soc., t. 15, 1970, p. 11-40. Zbl0205.53702MR267604
  13. D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an uncompressible fluid. Ann. Math., t. 42, 1970, p. 102-163. Zbl0211.57401MR271984
  14. A. Fischer and J. Marsden, Linearization stability of the Einstein equations. Bull. Am. Math. Soc., t. 79, 1973, p. 997-1003. Zbl0274.58003MR426035
  15. A. Fischer and J. Marsden, Linearization stability of the nonlinear partial differential equations. Proc. Symp. Pure Math. A. M. S., t. 27, 1975 a, part 2, p. 219-263. Zbl0314.53031MR383456
  16. A. Fischer and J. Marsden, Deformations of the scalar curvature. Duke Math. J., t. 42, 1975 b, p. 519-547. Zbl0336.53032MR380907
  17. A. Fischer and J. Marsden, The Initial Value Problem and the Canonical Formalism of General Relativity, in Gravitational Theories since Einstein, ed. S. W. Hawking and W. Israel, Cambridge University Press, Cambridge, 1979 a. 
  18. A. Fischer and J. Marsden, Topics in the dynamics of general relativity, in Proceedings of the International School of Physics « Enrico Fermi », Course LXVII, Isolated Gravitating Systems in General Relativity, ed. J. Ehlers, North Holland Publishing Company, Amsterdam, New York, 1979 b. MR641404
  19. S.W. Hawkings and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973. Zbl0265.53054MR424186
  20. R.T. Jantzen, The dynamical degrees of freedom in spatially homogeneous cosmology. Comm. Math. Phys., t. 64, 1979, p. 211-232. Zbl0404.53054MR520091
  21. J. Marsden, Qualitative methods in bifurcation theory. Bull. Am. Math. Soc., t. 84, 1978, 1125-1148. Zbl0404.35010MR508450
  22. J. Marsden, Geometric methods in Mathematical Physics, CBMS regional conference series, American Mathematical Society, 1980. Zbl0485.70001MR569294
  23. J. Marsden and F. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity (to appear), 1978. MR598585
  24. C.W. Misner, R.S. Thorne and J.A. Wheeler, Gravitation, W. H. Freeman and Company, San Francisco, 1974. 
  25. V. Moncrief, Spacetime symmetries and linearization stability of the Einstein equations I. J. Math. Phys., t. 16, 1975 a, p. 493-498. Zbl0314.53035MR363398
  26. V. Moncrief, Decompositions of gravitational perturbations. J. Math. Phys., t. 16, 1975 b, p. 1556-1560. MR371350
  27. V. Moncrief, Spacetime symmetries and linearization stability of the Einstein equations II. J. Math. Phys., t. 17, 1976, p. 1893-1902. MR416469
  28. V. Moncrief, Invariant states and quantized gravitational perturbations. Phys. Rev., t. D 18, 1978, p. 983-989. MR496394
  29. R. Palais, Global formulation of Lie theory of transformation groups, in Memoris A. M. S., t. 22, 1957. Zbl0178.26502MR121424
  30. R. Palais, The Morse lemma on Banach spaces. Bull. Am. Math. Soc., t. 75, 1969, p. 968-971. Zbl0191.21704MR253378
  31. A.H. Taub, Approximate stress energy tensor for gravitational fields. J. Math. Phys., t. 2, 1961, p. 787-793. Zbl0112.21901MR187888
  32. A.H. Taub, Variational principles in general relativity, ed. C. Cattanes (Lectures at the Centro Internazionale Matematico Estiud, Bressanone), Edizioni Cremonese, Rome, 1970, p. 206-300. MR290763
  33. A.J. Tromba, Almost Riemannian structures on Banach manifolds, the More lemma, and the Darboux theorem. Can. J. Math., t. 28, 1976, p. 640-652. Zbl0345.58005MR402799
  34. J.A. Wolf, Spaces of Constant Curvature, 3rd edition, J. A. Wolf, Berkeley, California, 1974. Zbl0281.53034MR343214

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.