Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Discrete mechanics and optimal control: An analysis

Sina Ober-BlöbaumOliver JungeJerrold E. Marsden — 2011

ESAIM: Control, Optimisation and Calculus of Variations

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper...

Discrete mechanics and optimal control: An analysis

Sina Ober-BlöbaumOliver JungeJerrold E. Marsden — 2011

ESAIM: Control, Optimisation and Calculus of Variations

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper...

The equivalence of controlled lagrangian and controlled hamiltonian systems

Dong Eui ChangAnthony M. BlochNaomi E. LeonardJerrold E. MarsdenCraig A. Woolsey — 2002

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to show that the method of controlled lagrangians and its hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity)...

The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems

Dong Eui ChangAnthony M. BlochNaomi E. LeonardJerrold E. MarsdenCraig A. Woolsey — 2010

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity)...

Page 1

Download Results (CSV)