The n -field-irreducible part of a n -point functional

Erwin Brüning

Annales de l'I.H.P. Physique théorique (1981)

  • Volume: 34, Issue: 3, page 309-328
  • ISSN: 0246-0211

How to cite

top

Brüning, Erwin. "The $n$-field-irreducible part of a $n$-point functional." Annales de l'I.H.P. Physique théorique 34.3 (1981): 309-328. <http://eudml.org/doc/76118>.

@article{Brüning1981,
author = {Brüning, Erwin},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {tensor algebra; vacuum-expectation functional approach to quantum field theories; field-sector decompositions},
language = {eng},
number = {3},
pages = {309-328},
publisher = {Gauthier-Villars},
title = {The $n$-field-irreducible part of a $n$-point functional},
url = {http://eudml.org/doc/76118},
volume = {34},
year = {1981},
}

TY - JOUR
AU - Brüning, Erwin
TI - The $n$-field-irreducible part of a $n$-point functional
JO - Annales de l'I.H.P. Physique théorique
PY - 1981
PB - Gauthier-Villars
VL - 34
IS - 3
SP - 309
EP - 328
LA - eng
KW - tensor algebra; vacuum-expectation functional approach to quantum field theories; field-sector decompositions
UR - http://eudml.org/doc/76118
ER -

References

top
  1. [1] R. Haag, Phys. Rev., t. 112, 1958, p. 669. Zbl0085.43602MR99859
  2. [2] R. Jost, The general theory of quantized fields. Providence, R. I. : American Mathematical Society, 1965. Zbl0127.19105MR177667
  3. [3] E. Brüning, On Jacobi-fields; BI-TP, june 1979, p. 25-79 ; to appear in the Proceedings of the Colloquim on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, june 1979, p. 24-30, Esztergom. MR712674
  4. [4] J. Bros, M. Lassalle, Analyticity properties and many-particle structure in general quantum field theory I, II, III ; Comm. math. Phys., t. 36, 1974, p. 185-225 ; t. 43, 1975, p. 279-309; t. 54, 1977, p. 33-62. 
  5. [5] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume. Berlin, Heidelberg, New York, Springer, 1968. Zbl0155.45101MR226355
  6. [6] E. Brüning, On the Characterization of Relativistic Quantum Field Theories in Terms of Finitely Many Vacuum Expectation Values II ; Comm. math. Phys., t. 58, 1978, p. 167-194. MR503151
  7. [7] H. Epstein, V. Glaser, R. Stora, General Properties of the n-Point-Functionals in Local Quantum Field Theory; in: Structural Analysis of Collision Amplitudes, Les Houches, 1975, june Institute; Ed. : R. Balian, D. Iagolnitzer, North Holland, 1976. MR468697
  8. [8] J. Glimm, A. Jaffé, in International Symposium on Mathematical Problems in Thenetical Physics, Kyoto, Springer, Lecture Notes in Physics, t. 39, 1975. MR673769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.