A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles

F. Gesztesy; H. Grosse; B. Thaller

Annales de l'I.H.P. Physique théorique (1984)

  • Volume: 40, Issue: 2, page 159-174
  • ISSN: 0246-0211

How to cite

top

Gesztesy, F., Grosse, H., and Thaller, B.. "A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles." Annales de l'I.H.P. Physique théorique 40.2 (1984): 159-174. <http://eudml.org/doc/76231>.

@article{Gesztesy1984,
author = {Gesztesy, F., Grosse, H., Thaller, B.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonrelativistic limit; spectral properties; relativistic corrections for eigenvalues; pair of Pauli operators; abstract Dirac operator; perturbation theory; nonlocal interactions},
language = {eng},
number = {2},
pages = {159-174},
publisher = {Gauthier-Villars},
title = {A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles},
url = {http://eudml.org/doc/76231},
volume = {40},
year = {1984},
}

TY - JOUR
AU - Gesztesy, F.
AU - Grosse, H.
AU - Thaller, B.
TI - A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 40
IS - 2
SP - 159
EP - 174
LA - eng
KW - nonrelativistic limit; spectral properties; relativistic corrections for eigenvalues; pair of Pauli operators; abstract Dirac operator; perturbation theory; nonlocal interactions
UR - http://eudml.org/doc/76231
ER -

References

top
  1. [1] H. Baumgärtel, Endlichdimensionale analytische Störungstheorie, Akademie-Verlag, Berlin, 1972. Zbl0303.47012MR634965
  2. [2] R.J. Cirincione and P.R. Chernoff, Dirac and Klein-Gordon Equations: Convergence of solutions in the nonrelativistic limit. Commun. Math. Phys., t. 79, 1981, p. 33-46. Zbl0471.35024MR609226
  3. [3] P.A. Deift, Applications of a commutation formula. Duke Math. J., t. 45, 1978, p. 267-310. Zbl0392.47013MR495676
  4. [4] L.L. Foldy and S.A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev., t. 78, 1950, p. 29-36. Zbl0039.22605
  5. [5] F. Gesztesy, H. Grosse and B. Thaller, Spectral concentration in the nonrelativistic limit, Phys. Lett., 116 B, 1982, p. 155-157. 
  6. [6] F. Gesztesy, H. Grosse and B. Thaller, First order relativistic corrections and spectral concentration. Adv. Appl. Math. (to appear). Zbl0595.47007MR789851
  7. [7] F. Gesztesy, H. Grosse and B. Thaller, An efficient method for calculating relativistic corrections for spin-1/2 particles. Phys. Rev. Lett. (to appear). Zbl0534.46053
  8. [8] F. Gesztesy and L. Pittner, On the Friedrichs extension of ordinary differential operators with strongly singular potentials. Acta Phys. Austr., t. 51, 1979, p. 259-268. MR553603
  9. [9] F. Gesztesy, B. Simon and B. Thaller, On the self-adjointness of Dirac operators with anomalous magnetic moment (Caltech preprint, Pasadena, 1984). 
  10. [10] L.P. Horwitz and F.C. Rotbart, Nonrelativistic limit of relativistic quantum mechanics. Phys. Rev., t. D 24, 1981, p. 2127-2131. MR632521
  11. [11] W. Hunziker, On the nonrelativistic limit of the Dirac theory. Commun. Math. Phys., t. 40, 1975, p. 215-222. MR363275
  12. [12] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, New York/Berlin, 1980. Zbl0435.47001
  13. [13] A. Messiah, Quantum Mechanics, vol. 2, North Holland, Amsterdam, 1970. 
  14. [14] M.A. Naimark, Linear Differential Operators, vol. 2, F. Ungar Publ., New York, 1968. Zbl0227.34020MR262880
  15. [15] R.T. Prosser, Relativistic potential scattering. J. Math. Phys., t. 4, 1963, p. 1048-1054. Zbl0128.22004MR154563
  16. [16] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. I: Functional Analysis, Academic Press, New York/London, 1972. Zbl0242.46001
  17. [17] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. IV: Analysis of Operators, Academic Press, New York-San Francisco-London, 1978. Zbl0401.47001
  18. [18] A.Y. Schoene, On the nonrelativistic limits of the Klein-Gordon and Dirac equations, J. Math. Anal. Appl., t. 71, 1979, p. 36-47. Zbl0427.35063MR545860
  19. [19] G.L. Sewell, An appropriate relation between the energy levels of a particle in a field of given potential energy, calculated in the relativistic and non-relativistic theories. Proc. Cambridge Phil. Soc., t. 45, 1949, p. 631-637. Zbl0038.40603
  20. [20] O. Steinmann, 1/c Expansion of bound-state energies in QED, Nucl. Phys., t. B 196, 1982, p. 394-412. MR648057
  21. [21] E.C. Titchmarsh, On the relation between the eigenvalues in relativistic and non-relativistic quantum mechanics. Proc. Roy. Soc., t. A 266, 1962, p. 33-46. Zbl0127.19004MR131598
  22. [22] K. Veselić, Perturbation of pseudoresolvents and analyticity in 1/c of relativistic quantum mechanics. Commun. Math. Phys., t. 22, 1971, p. 27-43. Zbl0212.15701MR300579
  23. [23] K. Veselić and J. Weidmann, Existenz der Wellenoperatoren für eine allgemeine Klasse von Operatoren, Math. Z., t. 134, 1973, p. 255-274. Zbl0258.47011MR336120
  24. [24] K. Veselić, On the non-relativistic limit of the bound states of the Klein-Gordon equation. J. Math. Anal. Appl., t. 96, 1983, p. 63-84. Zbl0522.35008
  25. [25] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York/ Berlin, 1980. Zbl0434.47001MR566954
  26. [26] K. Yajima, Nonrelativistic limit of the Dirac theory, scattering theory, J. Fac. Sci. Univ. Tokyo, Sec. I A, t. 23, 1976, p. 517-523. Zbl0341.47001MR434240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.