On the nonrelativistic limit of the Dirac hamiltonian

D. R. Grigore; G. Nenciu; R. Purice

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 51, Issue: 3, page 231-263
  • ISSN: 0246-0211

How to cite

top

Grigore, D. R., Nenciu, G., and Purice, R.. "On the nonrelativistic limit of the Dirac hamiltonian." Annales de l'I.H.P. Physique théorique 51.3 (1989): 231-263. <http://eudml.org/doc/76467>.

@article{Grigore1989,
author = {Grigore, D. R., Nenciu, G., Purice, R.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {reduction scheme; pseudoresolvents; Dirac-Hamiltonian},
language = {eng},
number = {3},
pages = {231-263},
publisher = {Gauthier-Villars},
title = {On the nonrelativistic limit of the Dirac hamiltonian},
url = {http://eudml.org/doc/76467},
volume = {51},
year = {1989},
}

TY - JOUR
AU - Grigore, D. R.
AU - Nenciu, G.
AU - Purice, R.
TI - On the nonrelativistic limit of the Dirac hamiltonian
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 51
IS - 3
SP - 231
EP - 263
LA - eng
KW - reduction scheme; pseudoresolvents; Dirac-Hamiltonian
UR - http://eudml.org/doc/76467
ER -

References

top
  1. [1] A.I. Achiezer and W.B. Berestecky, Kvantovaja elektrodinamics, Gosudarstvennoe izdatel' stvo fiziko-matematicskoj literatury, Moscova, 1959. 
  2. [2] S. Agmon, Spectral Properties of Schrödinger Operators and Scattering Theory, Ann. Sc. Sup. Pisa, Vol. 2, 1975, pp. 151-218. Zbl0315.47007MR397194
  3. [3] W.O. Amrein, J.M. Jauch and K.B. Sinha, Scattering Theory in Quantum Mechanics, W. A. Benjamin Inc., Reading Massachusetts, 1977. Zbl0376.47001MR495999
  4. [4] K.M. Case, Some Generalization of the Foldy-Wouthuysen Transformation, Phys. Rev., Vol. 95, 1954, pp. 1323-1328. Zbl0057.20601MR66971
  5. [5] M. Cibils, Existence du Temps de Retard en Théorie de la Diffusion Quantique Non-Relativiste, Thèse, Univ. de Genève, 1987. 
  6. [6] E. De Vries, Foldy-Wouthuysen Transformations and Related Problems, Fortschr. f. Physik, Vol. 18, 1970, pp. 149-182. 
  7. [7] E. Eriksen, Foldy-Wouthuysen Transformation; Exact Solution with Generalization to the two-Particle Problem, Phys. Rev., Vol. 111, 1958, pp. 1011-1016. Zbl0082.41705MR95054
  8. [8] E. Eriksen and M. Kolsrud, Canonical Transformations of Dirac's Equation to Even Forms. Expansion in Terms of the External Fields, Nuovo Cim., Suppl. 18, 1960, pp. 1- 39. MR128843
  9. [9] L.L. Foldy and S.A. Wouthuysen, On the Dirac Theory of Spin 1/2 Particles and its Nonrelativistic limit, Phys. Rev., Vol. 78, 1950, pp. 29-36. Zbl0039.22605
  10. [10] F. Gesztesy, H. Grosse and B. Thaller, A Rigorous Approach to Relativistic Corrections of Bound State Energies for Spin -1/2 Particles, Ann. Inst. H. Poincaré, Vol. 40, 1984, p. 159. Zbl0534.46053MR747200
  11. [11] W. Hunziker, On the Spectra of Schrödinger Multiparticle Hamiltonians, Helv. Phys. Acta, Vol. 39, 1966, pp. 451-462. Zbl0141.44701MR211711
  12. [12] W. Hunziker, On the Nonrelativistic Limit of the Dirac Theory, Comm. Math. Phys., Vol. 40, 1975, pp. 215-222. MR363275
  13. [13] A. Jensen and T. Kato, Spectral Properties of Schrödinger Operators and Time-decay of the Wave Functions, Duke Math. J., Vol. 46, 1979, pp. 583-612. Zbl0448.35080MR544248
  14. [14] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer Verlag, New York, Berlin, 1980. Zbl0435.47001MR407617
  15. [15] S.T. Kuroda, Scattering Theory for Differential Operators I: Operator Theory, J. Math. Soc. Japan, Vol. 25, 1973, pp. 75-104. Zbl0245.47006MR326435
  16. [16] S.T. Kuroda, Scattering Theory for Differential Operators II: Self-Adjoint Elliptic Operators, J. Math. Soc. Japan, Vol. 25, 1973, pp. 222-234. Zbl0252.47007MR326436
  17. [17] L. Landau and E. Lifshitz, Physique Théorique; Vol. IV, 2e Parite, Ed. Mir, Moscou, 1972. 
  18. [18] G. Nenciu, Eigenfunction Expansions for Schrödinger and Dirac Operators with Singular Potentials, Comm. Math. Phys., Vol. 42, 1975, pp. 221-229. Zbl0326.35064MR374705
  19. [19] G. Nenciu, Existence of the Spontaneous Pair Creation in the External Field Approximation of Q.E.D., Comm. Math. Phys., Vol. 109, 1987, pp. 303-312. Zbl0627.58040MR880417
  20. [20] W. Pauli, Z. f. Phys., Vol. 43, 1927, p. 601. JFM53.0858.02
  21. [21] R.T. Prosser, Relativistic Potential Scattering, J. Math. Phys., Vol. 4, 1963, p. 1048. Zbl0128.22004MR154563
  22. [22] M. Schechter, Scattering Theory for Elliptic Operators of Arbitrary Order, Comm. Math. Helv., Vol. 49, 1974, pp. 84-113. Zbl0288.47012MR367484
  23. [23] S. Schweber, An Introduction to Relativistic Quantum Field Theory. New York, Harper & Row Publishers Inc., 1961. Zbl0111.43102
  24. [24] B. Thaller, Normal Forms of an Abstract Dirac Operator and Applications to Scattering Theory, J. Math. Phys., Vol. 29, 1988, pp. 249-257. Zbl0639.47043MR921790
  25. [25] K. Veselic, Perturbation of Pseudoresolvents and Analyticity in 1/c of Relativistic Quantum Mechanics, Comm. Math. Phys., Vol. 22, 1971, pp. 27-43. Zbl0212.15701MR300579
  26. [26] K. Yajima, Nonrelativistic Limit of the Dirac Theory, Scattering Theory, J. Fac. Sci., Univ. of Tokyo I A, Vol. 23, 1976, pp. 517-523. Zbl0341.47001MR434240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.