Feynman maps, Cameron-Martin formulae and anharmonic oscillators
Annales de l'I.H.P. Physique théorique (1984)
- Volume: 41, Issue: 2, page 115-142
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] S. Albeverio and R. Hoegh-Krohn, Mathematical Theory of Feynman Path Integrals, Springer Lecture Notes in Mathematics, p. 523, Berlin-Heidelberg-New York, 1976. Zbl0337.28009MR495901
- [2] R.J. Blattner, Pacific J. Math., t. 8, 1958, p. 665-677. Zbl0087.32001MR103421
- [3] R.H. Cameron and W.T. Martin, Trans. Amer. Math. Soc., t. 58, n° 2, 1945, p. 184-219. Zbl0060.29104MR13240
- [4] N. Dunford and J.T. Schwarz, Linear Operators Part I, Interscience, New York, 1967.
- [5] a) K.D. Elworthy and A. Truman, A Cameron-Martin Formula for Feynman integrals, p. 288-294 in Mathematical Problems in Theoretical Physics (Proceedings, Berlin (West) 1981) edited by R. Schrader, R. Seiler and D. A. Uhlenrock (Springer Lecture Notes in Physics153).
- b) K.D. Elworthy and A. Truman, J. Math. Phys., t. 22, 1981, p. 2144-2166. Zbl0485.70024MR641455
- [6] L.D. Faddeev and A.R. Slavnov, Gauge Fields, Introduction to Quantum Theory (Benjamin/Cummings, Reading Mass., 1980). Zbl0486.53052MR618649
- [7] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965). Zbl0176.54902
- [8] a) D. Fujiwara, Proc. Japan Acad., t. 55 A, 1979, p. 195-199. Zbl0432.35007
- b) D. Fujiwara, Proc. Japan Acad., t. 55 A, 1979, p. 273-277, and references cited therein. Zbl0454.35084MR553398
- [9] L. Hörmander, Acta Math., t. 127, 1971, p. 79-183. Zbl0212.46601MR388463
- [10] V.P. Maslov, Theorie des Perturbations et Methods Asymptotiques (Dunod, Paris, 1972) and references cited therein. Zbl0247.47010
- [11] A. Maheshwari, C. Dewitt-Morette and B. Nelson, Phys. Rep., t. 50, 1979, p. 257- 372.
- [12] a) M. Reed and B. Simon, Methods of Modern Mathematical Physics, I Functional Analysis (Academic Press, New York and London, 1973). M. Reed and B. Simon, Methods of Modern Mathematical Physics, II Fourier Analysis and Self-adjointness (Academic Press, New York and London, 1975. Zbl0242.46001MR751959
- [13] J. Rezende, Remark on the solution of the Schrödinger equation for anharmonic oscillators via Feynman path integral, BI TP 82/22, Bielefeld preprint, August 1982. MR691976
- [14] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Tata Institute Studies in Maths, t. 6, BombayOxford University Press, 1973. Zbl0298.28001MR426084
- [15] B. Simon, Functional Integration and Quantum Physics (Academic Press, New York, 1979). Zbl0434.28013MR544188
- [16] B. Simon, Trace ideals and their applications (Cambridge University Press, London Math. Soc. Lecture Note Series, 1979). Zbl0423.47001MR541149
- [17] D.L. Skoug and G.W. Johnson, J. Func. Anal., t. 12, 1973, p. 129-152. Zbl0255.46041
- [18] J. Tarski and H.P. Berg, J. Phys. A, t. 14, 1981, p. 2207-2222. Zbl0469.46030MR628365
- [19] A. Truman, The polygonal path formulation of the Feynman path integral in Feynman path integrals edited by S. Albeverio et al. (Springer Lecture Notes in Physics, t. 106, 1979). Zbl0412.28009MR553077
Citations in EuDML Documents
top- G. Kallianpur, D. Kannan, R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula
- Y. Z. Hu, Paul-André Meyer, Chaos de Wiener et intégrale de Feynman
- Terence Chan, Indefinite quadratic functionals of gaussian processes and least-action paths