Indefinite quadratic functionals of gaussian processes and least-action paths

Terence Chan

Annales de l'I.H.P. Probabilités et statistiques (1991)

  • Volume: 27, Issue: 2, page 239-271
  • ISSN: 0246-0203

How to cite

top

Chan, Terence. "Indefinite quadratic functionals of gaussian processes and least-action paths." Annales de l'I.H.P. Probabilités et statistiques 27.2 (1991): 239-271. <http://eudml.org/doc/77407>.

@article{Chan1991,
author = {Chan, Terence},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Laplace transform; quadratic functionals; Gaussian processes; spectral theorem; random harmonic oscillator},
language = {eng},
number = {2},
pages = {239-271},
publisher = {Gauthier-Villars},
title = {Indefinite quadratic functionals of gaussian processes and least-action paths},
url = {http://eudml.org/doc/77407},
volume = {27},
year = {1991},
}

TY - JOUR
AU - Chan, Terence
TI - Indefinite quadratic functionals of gaussian processes and least-action paths
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1991
PB - Gauthier-Villars
VL - 27
IS - 2
SP - 239
EP - 271
LA - eng
KW - Laplace transform; quadratic functionals; Gaussian processes; spectral theorem; random harmonic oscillator
UR - http://eudml.org/doc/77407
ER -

References

top
  1. [1] J. Bognár, Infinite Inner Product Spaces, Ergebnisse der Mathematik und ihre Grenzgebiete, Vol. 78, Springer-Verlag1974. Zbl0286.46028MR467261
  2. [2] R.H. Cameron and W.T. Martin, Formulae for the Wiener Integral Under a Class of Linear Transformations, Trans. Am. Math. Soc., Vol. 58, No. 2, 1945. MR13240
  3. [3] C. Donati-Martin and M. Yor, Fubini's Theorem for Double Wiener Integrals and the Variance of the Brownian Path, Ann. Inst. H. Poincaré (Prob. Stat.), Vol. 27, No. 2, 1991, pp. 181-200. Zbl0738.60074MR1118933
  4. [4] D. Elworthy and A. Truman, Feynman Maps, Cameron-Martin Formulae and Anharmonic Oscillators, Ann. Inst. H. Poincaré (Phys. théor.), Vol. 41, No. 2, 1984. Zbl0578.28013MR769152
  5. [5] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, No. 18, American Mathematical Society, 1969. Zbl0181.13504MR246142
  6. [6] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren der mathematischen Wissenschaften, Vol. 288, Springer-Verlag, 1987. Zbl0635.60021MR959133
  7. [7] K. Jansons, T. Chan and L.C.G. Rogers, Polymers in Elongational Flows (in preparation). Zbl0790.60057
  8. [8] E.C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford University Press, 1939. Zbl0022.14602MR197687JFM65.0302.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.