Indefinite quadratic functionals of gaussian processes and least-action paths
Annales de l'I.H.P. Probabilités et statistiques (1991)
- Volume: 27, Issue: 2, page 239-271
 - ISSN: 0246-0203
 
Access Full Article
topHow to cite
topChan, Terence. "Indefinite quadratic functionals of gaussian processes and least-action paths." Annales de l'I.H.P. Probabilités et statistiques 27.2 (1991): 239-271. <http://eudml.org/doc/77407>.
@article{Chan1991,
	author = {Chan, Terence},
	journal = {Annales de l'I.H.P. Probabilités et statistiques},
	keywords = {Laplace transform; quadratic functionals; Gaussian processes; spectral theorem; random harmonic oscillator},
	language = {eng},
	number = {2},
	pages = {239-271},
	publisher = {Gauthier-Villars},
	title = {Indefinite quadratic functionals of gaussian processes and least-action paths},
	url = {http://eudml.org/doc/77407},
	volume = {27},
	year = {1991},
}
TY  - JOUR
AU  - Chan, Terence
TI  - Indefinite quadratic functionals of gaussian processes and least-action paths
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1991
PB  - Gauthier-Villars
VL  - 27
IS  - 2
SP  - 239
EP  - 271
LA  - eng
KW  - Laplace transform; quadratic functionals; Gaussian processes; spectral theorem; random harmonic oscillator
UR  - http://eudml.org/doc/77407
ER  - 
References
top- [1] J. Bognár, Infinite Inner Product Spaces, Ergebnisse der Mathematik und ihre Grenzgebiete, Vol. 78, Springer-Verlag1974. Zbl0286.46028MR467261
 - [2] R.H. Cameron and W.T. Martin, Formulae for the Wiener Integral Under a Class of Linear Transformations, Trans. Am. Math. Soc., Vol. 58, No. 2, 1945. MR13240
 - [3] C. Donati-Martin and M. Yor, Fubini's Theorem for Double Wiener Integrals and the Variance of the Brownian Path, Ann. Inst. H. Poincaré (Prob. Stat.), Vol. 27, No. 2, 1991, pp. 181-200. Zbl0738.60074MR1118933
 - [4] D. Elworthy and A. Truman, Feynman Maps, Cameron-Martin Formulae and Anharmonic Oscillators, Ann. Inst. H. Poincaré (Phys. théor.), Vol. 41, No. 2, 1984. Zbl0578.28013MR769152
 - [5] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, No. 18, American Mathematical Society, 1969. Zbl0181.13504MR246142
 - [6] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren der mathematischen Wissenschaften, Vol. 288, Springer-Verlag, 1987. Zbl0635.60021MR959133
 - [7] K. Jansons, T. Chan and L.C.G. Rogers, Polymers in Elongational Flows (in preparation). Zbl0790.60057
 - [8] E.C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford University Press, 1939. Zbl0022.14602MR197687JFM65.0302.01
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.