Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics
Annales de l'I.H.P. Physique théorique (1984)
- Volume: 41, Issue: 2, page 171-189
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCardin, Franco. "Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics." Annales de l'I.H.P. Physique théorique 41.2 (1984): 171-189. <http://eudml.org/doc/76255>.
@article{Cardin1984,
author = {Cardin, Franco},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {existence and uniqueness theorems; relativistic continuum mechanics; hyperbolization method; conservative system of partial differential equations; Clausius-Duhem thermodynamical inequality; relativistic viscous heat conducting fluids; well-posedness},
language = {eng},
number = {2},
pages = {171-189},
publisher = {Gauthier-Villars},
title = {Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics},
url = {http://eudml.org/doc/76255},
volume = {41},
year = {1984},
}
TY - JOUR
AU - Cardin, Franco
TI - Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 41
IS - 2
SP - 171
EP - 189
LA - eng
KW - existence and uniqueness theorems; relativistic continuum mechanics; hyperbolization method; conservative system of partial differential equations; Clausius-Duhem thermodynamical inequality; relativistic viscous heat conducting fluids; well-posedness
UR - http://eudml.org/doc/76255
ER -
References
top- [1] T. Alts and I. Müller, Relativistic Thermodynamics of Simple Heat Conducting Fluids. Arch. Rat. Mech. Anal., t. 48, 1972, p. 245. Zbl0252.76083MR413788
- [2] M. Berger and M. Berger, Perspectives in nonlinearity. W. A. Benjamin, Inc. New York, 1968. Zbl0185.22102
- [3] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 278 A, 1974, p. 909. Zbl0279.35058MR342870
- [4] G. Boillat and T. Ruggeri, Limite de la vitesse de chocs dans les champs à densité d'énergie convex. C. R. Acad. Sci. Paris, t. 289 A, 1979, p. 257. Zbl0417.73027MR552226
- [5] G. Boillat and T. Ruggeri, Symmetric form of nonlinear mechanics equations and entropy growth across a shock. Acta Mechanica, t. 35, 1980, p. 271. Zbl0474.73037
- [6] A. Bressan, Relativistic Theories of Materials, Springer-Verlag, Berlin, Heidelberg, New York, 1978. Zbl0373.73001MR509212
- [7] A. Bressan, On Relativistic Heat Conduction in the Stationary and Nonstationary Cases, the Objectivity Principle and Piezo-elasticity. Lett. Al Nuovo Cimento, t. 33, n° 4, 1982, p. 108. Addendum On Relativistic Heat Conduction...Lett. Al Nuovo Cimento, t. 34, p. 63.
- [8] A. Bressan, On the Relativistic Nonstationary Law of Heat Conduction and the Objectivity Principle, Piezoelasticity. Being printed on B.U.M.I. (Bollettino dell' Unione Matematica Italiana). Zbl0531.73001
- [9] B.D. Coleman and W. Noll, The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity. Arch. Rat. Mech. Anal., t. 13, 1963, p. 167. Zbl0113.17802MR153153
- [10] A.E. Fisher and J.E. Marsden, The Einstein Evolution Equations as a First-Order Quasi-Linear Symmetric Hyperbolic System, I. Commun. math. Phys., t. 28, 1972, p. 1. Zbl0247.35082MR309507
- [11] A.E. Fisher and J.E. Marsden, General Relativity, Partial Differential Equations and Dynamical System, Proc. Symp. Pure Math., t. 23, Ed. by C. Spencer, 1973. Zbl0262.35035MR407886
- [12] K.O. Friedrichs, Conservation Equations and the Laws of Motion in Classical Physics. Comm. Pure Appl. Math., t. 31, 1978, p. 123. Zbl0379.35002MR509916
- [13] K.O. Friedrichs and P.D. Lax, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. U. S. A., t. 68, 1971, p. 1686. Zbl0229.35061MR285799
- [14] S.K. Godunov, An interesting class of quasilinear systems. Sov. Math., t. 2, 1961, p. 947. Zbl0125.06002
- [15] E. Massa and A. Morro, A dynamical approach to relativistic continuum mechanics. Ann. Inst. Henri Poincaré, Sect. A, t. 29, 1978, p. 423. Zbl0401.73007MR525392
- [16] I. Müller, Towards Relativistic Thermodynamics. Arch. Rat. Mech. Anal., t. 34, 1969, p. 259. Zbl0182.59801
- [17] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi–linear hyperbolic systems. Relativistic Fluid Dynamics. Ann. Inst. Henri Poincaré, Sect. A, t. 34, 1981, p. 65. Zbl0473.76126MR605357
- [18] J. Serrin, Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik, Band VIII, Berlin-Göttingen-Heidelberg ; Springer1959. MR108116
- [19] C.A. Truesdell and R.A. Toupin, The Classical Field Theories. Handbuch der Physik, Band 111/1, Berlin-Göttingen-Heidelberg; Springer1960. MR118005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.