Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics
Tommaso Ruggeri; Alberto Strumia
Annales de l'I.H.P. Physique théorique (1981)
- Volume: 34, Issue: 1, page 65-84
- ISSN: 0246-0211
Access Full Article
topHow to cite
topRuggeri, Tommaso, and Strumia, Alberto. "Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics." Annales de l'I.H.P. Physique théorique 34.1 (1981): 65-84. <http://eudml.org/doc/76107>.
@article{Ruggeri1981,
author = {Ruggeri, Tommaso, Strumia, Alberto},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetric systems; supplementary law with convex density of energy; concave entropy; concave free enthalpy},
language = {eng},
number = {1},
pages = {65-84},
publisher = {Gauthier-Villars},
title = {Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics},
url = {http://eudml.org/doc/76107},
volume = {34},
year = {1981},
}
TY - JOUR
AU - Ruggeri, Tommaso
AU - Strumia, Alberto
TI - Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1981
PB - Gauthier-Villars
VL - 34
IS - 1
SP - 65
EP - 84
LA - eng
KW - symmetric systems; supplementary law with convex density of energy; concave entropy; concave free enthalpy
UR - http://eudml.org/doc/76107
ER -
References
top- [1] K.O. Friedrichs, On the laws of relativistic electro-magneto-fluid dynamics. Comm. Pure Appl. Math., 1974, t. 27, p. 749-808; Conservation equations and the laws of motion in classical physics. Comm. Pure Appl. Math., t. 31, 1978, p. 123-131. Zbl0308.76075MR509916
- [2] A. Fisher and D.P. Marsden, The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system I. Comm. Math. Phys., t. 28, 1972, p. 1-38. General relativity, partial differential equations and dynamical systems. Proc. Symp. Pure Math., t. 23, Ed. by C. Spencer; Amer. Math. Soc., 1973. MR309507
- [3] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. U. S. A., t. 68, 1971, p. 1686-1688. Zbl0229.35061MR285799
- [4] P.D. Lax, Shock waves and entropy in: Contributions to non linear functional analysis (ed. E. H. Zarantonello), New York; Academic Press, 1971, p. 603-634. Zbl0268.35014MR393870
- [5] G. Boillat, Sur une fonction croissante comme l'entropie et génératrice des chocs dans les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 283 A, 1976, p. 409-412. Zbl0336.35071MR421293
- [6] G. Boillat and T. Ruggeri, Limite de la vitesse des chocs dans les champs à densité d'énergie convex. C. R. Acad. Sci., t. 289 A, 1979, p. 257-258. Zbl0417.73027MR552226
- [7] M. Berger and M. Berger, Perspectives in nonlinearity. W. A. Benjamin, Inc. New York, 1968, p. 137. Zbl0185.22102
- [8] S.K. Godunov, An interesting class of quasilinear systems. Sov. Math., t. 2, 1961, p. 947-948. Zbl0125.06002MR116141
- [9] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sci., Paris, t. 278 A, 1974, p. 909-912. Zbl0279.35058MR342870
- [10] G. Boillat and T. Ruggeri, Symmetric form of nonlinear mechanics equations and entropy growth across a shock. Acta Mechanica, t. 35, 1980, p. 271-274. Zbl0474.73037
- [11] D. Fusco, Alcune considerazioni sulle onde d'urto in fluidodinamica. Rend. Sem. Mat. di Modena, t. 28, 1979, 223-233. Zbl0435.76042
- [12] I.- Shih Liu, Method of Lagrange Multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal., t. 46, 1972, p. 131-148. Zbl0252.76003MR337164
- [13] I. Müller, The coldness, a universal function in thermoelastic bodies, Arch. Rat. Mech. Anal., t. 41, 1971, p. 319-332. Entropy in non-equilibrium—a challenge to mathematicians. Trend in Application of Pure Mathematics to Mechanics, Vol. II, Ed. H. Zorski, PitmanLondon, 1979, p. 281-295. Zbl0225.73003MR345531
- [14] S.N. Kruskov, Results on the character of continuity of solutions of parabolic equations and some their applications. Math. Zametky, t. 6, 1969; p. 97-108.
- [15] E. Hopf, On the right weak solution of the Cauchy problem for quasilinear equation of first order. J. of Math. and Mech., t. 19, 1969, p. 487-493. Zbl0188.16102MR251357
- [16] A. Lichnerowicz, Ondes des choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes, in: Relativistic fluid dynamics, Corso CIME1970, 87-203 Ed. Cremonese, 1971. Shock waves in relativistic magnetohydrodynamics under general assumptions. Journal of Math. Phys., t. 17, 1976, p. 2135-2142. Relativistic Hydrodynamics and Magnetohydrodynamics, W. A. Benjamin, New York, 1967. MR297295
- [17] L. Landau and E. Lifchtiz, Mécanique des fluides, ed. MIR, Moscou, 1971, p. 625. Zbl0216.25801
- [18] D. Ter Haar and H. Wergeland, Elements of thermodynamics. Addison Wesley Publ. Co., Reading, Mass., 1966.
Citations in EuDML Documents
top- A. M. Anile, S. Pennisi, M. Sammartino, Covariant radiation hydrodynamics
- Alberto Strumia, Some remarks on conservative symmetric-hyperbolic systems governing relativistic theories
- Franco Cardin, Existence and uniqueness theorems for viscous fluids capable of heat conduction in a relativistic theory of non stationary thermodynamics
- Carmela Currò, Domenico Fusco, Discontinuous travelling wave solutions for a class of dissipative hyperbolic models
- Ingo Müller, Extended thermodynamics---a theory of symmetric hyperbolic field equations
- Giovanni Mascali, Vittorio Romano, Maximum entropy principle in relativistic radiation hydrodynamics
- A. M. Blokhin, V. Romano, Yu. L. Trakhinin, Stability of shock waves in relativistic radiation hydrodynamics
- Tommaso Ruggeri, The entropy principle: from continuum mechanics to hyperbolic systems of balance laws
- Sebastiano Pennisi, A covariant and extended model for relativistic magnetofluiddynamics
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.