Comparison of exact and approximate causal solutions of a model curved-space wave equation
James L. Anderson; William J. Heyl
Annales de l'I.H.P. Physique théorique (1984)
- Volume: 41, Issue: 4, page 385-398
- ISSN: 0246-0211
Access Full Article
topHow to cite
topAnderson, James L., and Heyl, William J.. "Comparison of exact and approximate causal solutions of a model curved-space wave equation." Annales de l'I.H.P. Physique théorique 41.4 (1984): 385-398. <http://eudml.org/doc/76266>.
@article{Anderson1984,
author = {Anderson, James L., Heyl, William J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {retarded Green function; curved space-time; pure-frequency point source; asymptotic expansion; small parameter; singular perturbation},
language = {eng},
number = {4},
pages = {385-398},
publisher = {Gauthier-Villars},
title = {Comparison of exact and approximate causal solutions of a model curved-space wave equation},
url = {http://eudml.org/doc/76266},
volume = {41},
year = {1984},
}
TY - JOUR
AU - Anderson, James L.
AU - Heyl, William J.
TI - Comparison of exact and approximate causal solutions of a model curved-space wave equation
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 41
IS - 4
SP - 385
EP - 398
LA - eng
KW - retarded Green function; curved space-time; pure-frequency point source; asymptotic expansion; small parameter; singular perturbation
UR - http://eudml.org/doc/76266
ER -
References
top- [1] J.L. Anderson and L.S. Kegeles, Gen. Rel. Grav., t. 14,1982, p. 781. MR667597
- [2] W.L. Burke, J. Math. Phys., t. 12, 1971, p. 431 ; J. Ehlers, In Proceedings of the International School of General Relativistic Effects in Physics and Astrophysics: Experiments and Theory, Max Planck Institute, Munich, West Germany, 1977.
- [3] J.L. Anderson, Private communication.
- [4] J.M. Bird and W.G. Dixon, Ann. of Phys., t. 94, 1975, p. 320 ; J.L. Anderson, Private communication. Zbl0322.35051MR391861
- [5] V. Fock, The Theory of Space, Time and Gravitation, 2nd ed., Pergamon Press, New York, 1964, p. 365. Zbl0112.43804
- [6] J.L. Anderson and L.S. Kegeles, op. cit., p. 782.
- [7] J.L. Anderson and L.S. Kegeles, op. cit., p. 784.
- [8] M. Abramowitz and I.A. Stegun, eds. Handbook of Mathematical Functions, Dover, New York, 1965, p. 231.
- [9] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics, Vol. 2, 1970, Addison-Wesley Publishing Co., Reading, Mass. Zbl0195.55704
- [10] M. Abramowitz and I.A. Stegun, op. cit., p. 505.
- [11] Ibid., p. 508.
- [12] Ibid., p. 256.
- [13] A. Erdelyi, ed. Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953, p. 280. Zbl0051.30303
- [14] M. Abramowitz and I.A. Stegun, op. cit., p. 504.
- [15] V. Fock, op. cit., p. 368.
- [16] V.I. Smirnov, A Course of Higher Mathematics, Vol. IV, Pergamon Press, 1964, p. 441. Zbl0121.25904
- [17] Ibid., p. 136.
- [18] M. Abramowitz and I.A. Stegun, op. cit., p. 505.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.