Comparison of exact and approximate causal solutions of a model curved-space wave equation

James L. Anderson; William J. Heyl

Annales de l'I.H.P. Physique théorique (1984)

  • Volume: 41, Issue: 4, page 385-398
  • ISSN: 0246-0211

How to cite

top

Anderson, James L., and Heyl, William J.. "Comparison of exact and approximate causal solutions of a model curved-space wave equation." Annales de l'I.H.P. Physique théorique 41.4 (1984): 385-398. <http://eudml.org/doc/76266>.

@article{Anderson1984,
author = {Anderson, James L., Heyl, William J.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {retarded Green function; curved space-time; pure-frequency point source; asymptotic expansion; small parameter; singular perturbation},
language = {eng},
number = {4},
pages = {385-398},
publisher = {Gauthier-Villars},
title = {Comparison of exact and approximate causal solutions of a model curved-space wave equation},
url = {http://eudml.org/doc/76266},
volume = {41},
year = {1984},
}

TY - JOUR
AU - Anderson, James L.
AU - Heyl, William J.
TI - Comparison of exact and approximate causal solutions of a model curved-space wave equation
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 41
IS - 4
SP - 385
EP - 398
LA - eng
KW - retarded Green function; curved space-time; pure-frequency point source; asymptotic expansion; small parameter; singular perturbation
UR - http://eudml.org/doc/76266
ER -

References

top
  1. [1] J.L. Anderson and L.S. Kegeles, Gen. Rel. Grav., t. 14,1982, p. 781. MR667597
  2. [2] W.L. Burke, J. Math. Phys., t. 12, 1971, p. 431 ; J. Ehlers, In Proceedings of the International School of General Relativistic Effects in Physics and Astrophysics: Experiments and Theory, Max Planck Institute, Munich, West Germany, 1977. 
  3. [3] J.L. Anderson, Private communication. 
  4. [4] J.M. Bird and W.G. Dixon, Ann. of Phys., t. 94, 1975, p. 320 ; J.L. Anderson, Private communication. Zbl0322.35051MR391861
  5. [5] V. Fock, The Theory of Space, Time and Gravitation, 2nd ed., Pergamon Press, New York, 1964, p. 365. Zbl0112.43804
  6. [6] J.L. Anderson and L.S. Kegeles, op. cit., p. 782. 
  7. [7] J.L. Anderson and L.S. Kegeles, op. cit., p. 784. 
  8. [8] M. Abramowitz and I.A. Stegun, eds. Handbook of Mathematical Functions, Dover, New York, 1965, p. 231. 
  9. [9] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics, Vol. 2, 1970, Addison-Wesley Publishing Co., Reading, Mass. Zbl0195.55704
  10. [10] M. Abramowitz and I.A. Stegun, op. cit., p. 505. 
  11. [11] Ibid., p. 508. 
  12. [12] Ibid., p. 256. 
  13. [13] A. Erdelyi, ed. Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953, p. 280. Zbl0051.30303
  14. [14] M. Abramowitz and I.A. Stegun, op. cit., p. 504. 
  15. [15] V. Fock, op. cit., p. 368. 
  16. [16] V.I. Smirnov, A Course of Higher Mathematics, Vol. IV, Pergamon Press, 1964, p. 441. Zbl0121.25904
  17. [17] Ibid., p. 136. 
  18. [18] M. Abramowitz and I.A. Stegun, op. cit., p. 505. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.