Perturbation theory for Schrödinger operators with complex potentials
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 42, Issue: 3, page 235-251
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCaliceti, Emanuela. "Perturbation theory for Schrödinger operators with complex potentials." Annales de l'I.H.P. Physique théorique 42.3 (1985): 235-251. <http://eudml.org/doc/76280>.
@article{Caliceti1985,
author = {Caliceti, Emanuela},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {perturbation theory; dilated Hamiltonian; dilation analytic; spectral representation for the resolvent; spectral family of projections; functional calculus},
language = {eng},
number = {3},
pages = {235-251},
publisher = {Gauthier-Villars},
title = {Perturbation theory for Schrödinger operators with complex potentials},
url = {http://eudml.org/doc/76280},
volume = {42},
year = {1985},
}
TY - JOUR
AU - Caliceti, Emanuela
TI - Perturbation theory for Schrödinger operators with complex potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 3
SP - 235
EP - 251
LA - eng
KW - perturbation theory; dilated Hamiltonian; dilation analytic; spectral representation for the resolvent; spectral family of projections; functional calculus
UR - http://eudml.org/doc/76280
ER -
References
top- [1] E. Balslev, Comm. Math. Phys., t. 52, 1977, p. 127-146. Zbl0352.35038MR438950
- [2] E. Balslev, J. Funct. Anal., t. 29, 1978, p. 375-396. Zbl0392.47003MR512251
- [3] E. Caliceti, Perturbation Theory for Schrödinger Operators with Complex Potentials. Doctoral dissertation presented at the University of Virginia, Department of Mathematics. August 1983.
- [4] E. Caliceti, M. Maioli, Ann. Inst. H. Poincaré, Section A (Physique Théorique), t. XXXVIII, no. 2, 1983, p. 175-186. Zbl0521.47009MR705339
- [5] S. Coleman, The Uses of Instantons. Lectures delivered at the 1977 International School of Subnuclear Physics Ettore Majorana.
- [6] E.B. Davies, B. Simon, Comm. Math. Phys., t. 63, 1978, p. 277-301. Zbl0393.34015MR513906
- [7] N. Dunford, J.T. Schwartz, Linear Operators Part III. New York, Wiley-Interscience, 1971. Zbl0243.47001MR1009164
- [8] T. Kato, Math. Annal., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
- [9] T. Kato, Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York, Springer1966. Zbl0148.12601MR203473
- [10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. IV, New York, Academic Press, 1978. Zbl0401.47001
- [11] C. Van Winter, J. Math. Anal. Appl., t. 94, 1983, p. 406-434. Zbl0546.35064MR706373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.