Perturbation theory for Schrödinger operators with complex potentials

Emanuela Caliceti

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 3, page 235-251
  • ISSN: 0246-0211

How to cite

top

Caliceti, Emanuela. "Perturbation theory for Schrödinger operators with complex potentials." Annales de l'I.H.P. Physique théorique 42.3 (1985): 235-251. <http://eudml.org/doc/76280>.

@article{Caliceti1985,
author = {Caliceti, Emanuela},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {perturbation theory; dilated Hamiltonian; dilation analytic; spectral representation for the resolvent; spectral family of projections; functional calculus},
language = {eng},
number = {3},
pages = {235-251},
publisher = {Gauthier-Villars},
title = {Perturbation theory for Schrödinger operators with complex potentials},
url = {http://eudml.org/doc/76280},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Caliceti, Emanuela
TI - Perturbation theory for Schrödinger operators with complex potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 3
SP - 235
EP - 251
LA - eng
KW - perturbation theory; dilated Hamiltonian; dilation analytic; spectral representation for the resolvent; spectral family of projections; functional calculus
UR - http://eudml.org/doc/76280
ER -

References

top
  1. [1] E. Balslev, Comm. Math. Phys., t. 52, 1977, p. 127-146. Zbl0352.35038MR438950
  2. [2] E. Balslev, J. Funct. Anal., t. 29, 1978, p. 375-396. Zbl0392.47003MR512251
  3. [3] E. Caliceti, Perturbation Theory for Schrödinger Operators with Complex Potentials. Doctoral dissertation presented at the University of Virginia, Department of Mathematics. August 1983. 
  4. [4] E. Caliceti, M. Maioli, Ann. Inst. H. Poincaré, Section A (Physique Théorique), t. XXXVIII, no. 2, 1983, p. 175-186. Zbl0521.47009MR705339
  5. [5] S. Coleman, The Uses of Instantons. Lectures delivered at the 1977 International School of Subnuclear Physics Ettore Majorana. 
  6. [6] E.B. Davies, B. Simon, Comm. Math. Phys., t. 63, 1978, p. 277-301. Zbl0393.34015MR513906
  7. [7] N. Dunford, J.T. Schwartz, Linear Operators Part III. New York, Wiley-Interscience, 1971. Zbl0243.47001MR1009164
  8. [8] T. Kato, Math. Annal., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  9. [9] T. Kato, Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York, Springer1966. Zbl0148.12601MR203473
  10. [10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. IV, New York, Academic Press, 1978. Zbl0401.47001
  11. [11] C. Van Winter, J. Math. Anal. Appl., t. 94, 1983, p. 406-434. Zbl0546.35064MR706373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.