Odd anharmonic oscillators and shape resonances

E. Caliceti; M. Maioli

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 38, Issue: 2, page 175-186
  • ISSN: 0246-0211

How to cite

top

Caliceti, E., and Maioli, M.. "Odd anharmonic oscillators and shape resonances." Annales de l'I.H.P. Physique théorique 38.2 (1983): 175-186. <http://eudml.org/doc/76192>.

@article{Caliceti1983,
author = {Caliceti, E., Maioli, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {anharmonic oscillators; shape resonances; uniform boundedness of the resolvents; Weyl sequence; bound state perturbation theory; dilation analytic potentials; generalized resonances; dilation analyticity},
language = {eng},
number = {2},
pages = {175-186},
publisher = {Gauthier-Villars},
title = {Odd anharmonic oscillators and shape resonances},
url = {http://eudml.org/doc/76192},
volume = {38},
year = {1983},
}

TY - JOUR
AU - Caliceti, E.
AU - Maioli, M.
TI - Odd anharmonic oscillators and shape resonances
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 38
IS - 2
SP - 175
EP - 186
LA - eng
KW - anharmonic oscillators; shape resonances; uniform boundedness of the resolvents; Weyl sequence; bound state perturbation theory; dilation analytic potentials; generalized resonances; dilation analyticity
UR - http://eudml.org/doc/76192
ER -

References

top
  1. [1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, vol. II, New York, Ungar, 1963. Zbl0098.30702
  2. [2] E. Caliceti, S. Graffi, M. Maioli, Comm. Math. Phys., t. 75, 1980, p. 51-66. Zbl0446.47044MR581569
  3. [3] S. Coleman, The Uses of Instantons. Lectures delivered at the 1977, International School of Subnuclear Physics Ettore Majorana. 
  4. [4] A. Davydov, Quantum Mechanics, Oxford, New York, Pergamon Press, 1965. MR468691
  5. [5] I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Jerusalem, Israel Program for Scientific Translations, 1965. Zbl0143.36505MR190800
  6. [6] E. Vock, W. Hunziker, Stability of Schrödinger Eigenvalue Problems. Comm. Math. Phys., t. 83, 1982, p. 281-302. Zbl0528.35023MR649163
  7. [7] T. Kato, Perturbation Theory for Linear Operators. Berlin, Heidelberg, New York, Springer, 1966. Zbl0148.12601MR203473
  8. [8] M.A. Naimark, Linear Differential Operators, Part II, New York, Ungar, 1968. Zbl0227.34020
  9. [9] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. II, New York, Academic Press, 1975. Zbl0308.47002
  10. [10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. IV, New York, Academic Press, 1976. Zbl0401.47001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.