Potential scattering in stochastic mechanics

E. A. Carlen

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 4, page 407-428
  • ISSN: 0246-0211

How to cite

top

Carlen, E. A.. "Potential scattering in stochastic mechanics." Annales de l'I.H.P. Physique théorique 42.4 (1985): 407-428. <http://eudml.org/doc/76290>.

@article{Carlen1985,
author = {Carlen, E. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {stochastic mechanics; quantum scattering},
language = {eng},
number = {4},
pages = {407-428},
publisher = {Gauthier-Villars},
title = {Potential scattering in stochastic mechanics},
url = {http://eudml.org/doc/76290},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Carlen, E. A.
TI - Potential scattering in stochastic mechanics
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 407
EP - 428
LA - eng
KW - stochastic mechanics; quantum scattering
UR - http://eudml.org/doc/76290
ER -

References

top
  1. [1] E. Nelson, Quantum Fluctuations, Princeton, Princeton University Press, 1984. Zbl0563.60001MR783254
  2. [2] F. Guerra, L. Morato, Quantization of Dynamical Systems and Stochastic Control Theory, Phys. Rev. D., t. 27, 1983, p. 1771-1786. MR698913
  3. [3] D. Shucker, Stochastic Mechanics of Systems with Zero Potential, J. Func. Analysis, t. 38, 1980, p. 146-155. Zbl0447.60042MR587905
  4. [4] A. Jensen, T. Kato, Spectral Properties of Schrödinger Operators and Time Decay of the Wave Functions, Duke Math., Jour., t. 46, 1979, p. 583-611. Zbl0448.35080MR544248
  5. [5] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, New York, Academic Press, 1972. Zbl0242.46001
  6. [6] D. Stroock, S. Varadhan, Multidimensional Diffusion Processes, New York, Springer, 1979. Zbl0426.60069MR532498
  7. [7] E. Carlen, Conservative Diffusions, Com. Math. Phys., t. 94, 1984, p. 273-296. Zbl0558.60059MR763381
  8. [8] H. McKean, Stochastic Integrals, New York, Academic Press, 1969. Zbl0191.46603MR247684
  9. [9] W. Thirring, A Course in Mathematical Physics I: Classical Dynamical Systems, New York, Springer, 1978. Zbl0387.70001MR587314
  10. [10] B. Simon, Wave Operators for Classical Particle Scattering, Com. Math. Phys., t. 23, 1971, p. 37-48. Zbl0238.70012MR294899
  11. [11] V. Enss, Geometric Methods in Spectral and Scattering Theory for Schrödinger Operators in Rigorous Results in Atomic and Molecular Physics, G. Velo and A. Wightman eds., New York, Plenum1981. 
  12. [12] B. Simon, Schrödinger Semigroups, Bull. A. M. S., t. 7 (New Series), 1982, p. 447-526. Zbl0524.35002MR670130
  13. [13] J. Dollard, Asymptotic Convergence and the Coulomb Interaction, J. Math. Physics, t. 5, p. 729-738. MR163620
  14. [14] P.A. Perry, Propagation of States in Dialation Analytic Potentials and Asymptotic Completeness, Comm. Math. Phys., t. 81, 1981, p. 243-259. Zbl0471.47007MR632760
  15. [15] P. Biler, Stochastic Interpretation of Potential Scattering in Quantum Mechanics, Lett. Math. Phys., t. 8, 1984, p. 1-6. Zbl0534.60052MR731194
  16. [16] E. Nelson, Dynamical Theories of Brownian Motion, Princeton, Princeton University Press, 1967. Zbl0165.58502MR214150
  17. [17] Yu.V. Prokhorov, Convergence of Random Processes and Limit Theorems in Probability Theory. Theor. Prob. and Appl., t. 1, 1956, p. 157-214. Zbl0075.29001
  18. [18] M. Sevra, Elastic Scattering in Stochastic Mechanics, Lett. Nuov. Cim., t. 41, 1984, p. 198. MR769387

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.