Potential scattering in stochastic mechanics
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 42, Issue: 4, page 407-428
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCarlen, E. A.. "Potential scattering in stochastic mechanics." Annales de l'I.H.P. Physique théorique 42.4 (1985): 407-428. <http://eudml.org/doc/76290>.
@article{Carlen1985,
author = {Carlen, E. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {stochastic mechanics; quantum scattering},
language = {eng},
number = {4},
pages = {407-428},
publisher = {Gauthier-Villars},
title = {Potential scattering in stochastic mechanics},
url = {http://eudml.org/doc/76290},
volume = {42},
year = {1985},
}
TY - JOUR
AU - Carlen, E. A.
TI - Potential scattering in stochastic mechanics
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 4
SP - 407
EP - 428
LA - eng
KW - stochastic mechanics; quantum scattering
UR - http://eudml.org/doc/76290
ER -
References
top- [1] E. Nelson, Quantum Fluctuations, Princeton, Princeton University Press, 1984. Zbl0563.60001MR783254
- [2] F. Guerra, L. Morato, Quantization of Dynamical Systems and Stochastic Control Theory, Phys. Rev. D., t. 27, 1983, p. 1771-1786. MR698913
- [3] D. Shucker, Stochastic Mechanics of Systems with Zero Potential, J. Func. Analysis, t. 38, 1980, p. 146-155. Zbl0447.60042MR587905
- [4] A. Jensen, T. Kato, Spectral Properties of Schrödinger Operators and Time Decay of the Wave Functions, Duke Math., Jour., t. 46, 1979, p. 583-611. Zbl0448.35080MR544248
- [5] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, New York, Academic Press, 1972. Zbl0242.46001
- [6] D. Stroock, S. Varadhan, Multidimensional Diffusion Processes, New York, Springer, 1979. Zbl0426.60069MR532498
- [7] E. Carlen, Conservative Diffusions, Com. Math. Phys., t. 94, 1984, p. 273-296. Zbl0558.60059MR763381
- [8] H. McKean, Stochastic Integrals, New York, Academic Press, 1969. Zbl0191.46603MR247684
- [9] W. Thirring, A Course in Mathematical Physics I: Classical Dynamical Systems, New York, Springer, 1978. Zbl0387.70001MR587314
- [10] B. Simon, Wave Operators for Classical Particle Scattering, Com. Math. Phys., t. 23, 1971, p. 37-48. Zbl0238.70012MR294899
- [11] V. Enss, Geometric Methods in Spectral and Scattering Theory for Schrödinger Operators in Rigorous Results in Atomic and Molecular Physics, G. Velo and A. Wightman eds., New York, Plenum1981.
- [12] B. Simon, Schrödinger Semigroups, Bull. A. M. S., t. 7 (New Series), 1982, p. 447-526. Zbl0524.35002MR670130
- [13] J. Dollard, Asymptotic Convergence and the Coulomb Interaction, J. Math. Physics, t. 5, p. 729-738. MR163620
- [14] P.A. Perry, Propagation of States in Dialation Analytic Potentials and Asymptotic Completeness, Comm. Math. Phys., t. 81, 1981, p. 243-259. Zbl0471.47007MR632760
- [15] P. Biler, Stochastic Interpretation of Potential Scattering in Quantum Mechanics, Lett. Math. Phys., t. 8, 1984, p. 1-6. Zbl0534.60052MR731194
- [16] E. Nelson, Dynamical Theories of Brownian Motion, Princeton, Princeton University Press, 1967. Zbl0165.58502MR214150
- [17] Yu.V. Prokhorov, Convergence of Random Processes and Limit Theorems in Probability Theory. Theor. Prob. and Appl., t. 1, 1956, p. 157-214. Zbl0075.29001
- [18] M. Sevra, Elastic Scattering in Stochastic Mechanics, Lett. Nuov. Cim., t. 41, 1984, p. 198. MR769387
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.