Canonical realizations of Lie algebras associated with foliated coadjoint orbits
Annales de l'I.H.P. Physique théorique (1985)
- Volume: 43, Issue: 3, page 251-267
- ISSN: 0246-0211
Access Full Article
topHow to cite
topDittmann, Jochen, and Rudolph, Gerd. "Canonical realizations of Lie algebras associated with foliated coadjoint orbits." Annales de l'I.H.P. Physique théorique 43.3 (1985): 251-267. <http://eudml.org/doc/76301>.
@article{Dittmann1985,
author = {Dittmann, Jochen, Rudolph, Gerd},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {affine connection; leaves; Lagrangian foliation; symplectomorphism; foliated coadjoint orbits; canonical realizations of Lie algebras},
language = {eng},
number = {3},
pages = {251-267},
publisher = {Gauthier-Villars},
title = {Canonical realizations of Lie algebras associated with foliated coadjoint orbits},
url = {http://eudml.org/doc/76301},
volume = {43},
year = {1985},
}
TY - JOUR
AU - Dittmann, Jochen
AU - Rudolph, Gerd
TI - Canonical realizations of Lie algebras associated with foliated coadjoint orbits
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 3
SP - 251
EP - 267
LA - eng
KW - affine connection; leaves; Lagrangian foliation; symplectomorphism; foliated coadjoint orbits; canonical realizations of Lie algebras
UR - http://eudml.org/doc/76301
ER -
References
top- [1] P. Cordero, G.C. Ghirardi, Realizations of Lie algebras and algebraic treatment of quantum problems, Fortschr. Phys., t. 20, 1972, p. 105-133. MR449223
- [2] L.M. Alonso, Group-theoretical foundations of classical and quantum mechanics. I. Observables associated with Lie algebras, J. Math. Phys., t. 18, 1977, p. 1577-1581. Zbl0373.22012MR673018
- [3] V. Guillemin, S. Sternberg, The moment map and collective motion, Ann. Phys., t. 127, 1, 1980, p. 220-257. Zbl0453.58015MR576424
- [4] A. Barut, R. Raczka, Theory of group representations and applications, Warszawa, PWN Polish Sci. Publ., 1977. Zbl0471.22021MR495836
- [5] P. Exner, M. Havlicek, W. Lassner, Canonical realizations of classical Lie algebras, Czech. J. Phys. B, t. 26, 1976, p. 1213-1228. Zbl0381.17008MR430006
- [6] I.M. Gelfand, A.A. Kirillov, Sur les corps lies aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math., t. 31, 1966, p. 509-523. Zbl0144.02104MR207918
- [7] A. Joseph, Minimal realizations and spectrum generating algebras, Comm. Math. Phys., t. 36, 36, 1974, p. 325-337. Zbl0285.17007MR342049
- [8] A.A., Kirillov, Эиеиенти теории представлений, изд. « Hayкa ». MOCКBa, 1972.
- [9] B. Kostant, Quantization and unitary representations, in Lect. Notes Math., Vol. 170, Berlin-Heidelberg-New York, Springer-Verlag, 1972. Zbl0223.53028MR294568
- [10] D.J. Simms, N.M.J. Woodhouse, Lectures in geometric quantization, in Lect. Notes Phys., Vol. 53, Berlin-Heidelberg-New York, Springer-Verlag, 1976. Zbl0343.53023MR672639
- [11] A. Weinstein, Symplectic manifolds and their Lagrangean submanifolds, Advanc. Math., t. 6, 1971, p. 329-346. Zbl0213.48203MR286137
- [12] A. Weinstein, Lectures on symplectic manifolds, CBMS, no. 29, Rhode Island AMS, 1979. Zbl0406.53031MR598470
- [13] V. Guillemin, S. Sternberg, Geometric asymptotics, Math. surveys, no. 14, Rhode Island AMS, Providence, 1977. Zbl0364.53011MR516965
- [14] R. Bott, Lectures on characteristic classes and foliations, in Lect. Notes Math., t. 279, Berlin-Heidelberg-New York, Springer-Verlag, 1972. Zbl0241.57010MR362335
- [15] J. Kijowski, Geometrical structure of quantization, in Lect. Notes Math., t. 570, Berlin-Heidelberg-New York, Springer-Verlag, 1976. Zbl0347.53017MR461571
- [16] J. Dieudonné, Éléments d'Analyse, Tome 4, 2e édition, Gauthier-Villars Éditeur, Paris/Bruxelles/Montréal, 1974.
- [17] M. Havliček, W. Lassner, Canonical realizations of the Lie algebras gl(n, R) and sl(n, R), Rep. Math. Phys., t. 8, no. 3, 1975. Zbl0324.17002MR409575
- [18] J. Dittmann, G. Rudolph, Canonical realizations of Lie algebras related to associated bundles, Proc. of the Conf. on Diff. Geom. and its Applic., Nové Mĕsto, 1983, p. 51-59. Zbl0564.58017MR793199
- [19] J. Dittmann, G. Rudolph, Konstruktion Kanonischer Realisierungen der Lie–Algebra sp(n, R) auf koadjungierten Orbits, Wiss. Z. KMU Leipzig, Math.- Naturwiss. R., t. 33, 1984, 1, p. 4-13. Zbl0539.58010MR742612
- [20] J. Dittmann, G. Rudolph, Canonical realizations of Lie algebras and coadjoint orbits. Part I. Lagrangean foliations of symplectic manifolds, prepr. KMU–OFT 06/82, Leipzig, 1982.
- [21] J. Dittmann, G. Rudolph, Canonical realizations of Lie algebras and coadjoint orbits. Part II. Canonical realizations related to coadjoint orbits, prepr. KMU-QFT 03/83, Leipzig, 1983. Zbl0605.58023
- [22] P. Dazord, Sur la géométrie des sous-fibrés et des feuilletages lagrangiens, Ann. Scient. Ec. Norm. Sup.4e série, t. 13, 1981, p. 465-480. Zbl0491.58015MR654208
- [23] P. Dazord, Feuilletages en géométrie symplectique, C. R. Acad. Sci. Paris, t. 294, 1982, p. 489-491. Zbl0509.58035MR679560
- [24] P. Dazord, Feuilletages et mécanique hamiltonienne, Publ. Dép. Math. Univ. de Lyon, 1983, 3. B. Zbl0524.58016MR725514
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.