Canonical realizations of Lie algebras associated with foliated coadjoint orbits

Jochen Dittmann; Gerd Rudolph

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 43, Issue: 3, page 251-267
  • ISSN: 0246-0211

How to cite

top

Dittmann, Jochen, and Rudolph, Gerd. "Canonical realizations of Lie algebras associated with foliated coadjoint orbits." Annales de l'I.H.P. Physique théorique 43.3 (1985): 251-267. <http://eudml.org/doc/76301>.

@article{Dittmann1985,
author = {Dittmann, Jochen, Rudolph, Gerd},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {affine connection; leaves; Lagrangian foliation; symplectomorphism; foliated coadjoint orbits; canonical realizations of Lie algebras},
language = {eng},
number = {3},
pages = {251-267},
publisher = {Gauthier-Villars},
title = {Canonical realizations of Lie algebras associated with foliated coadjoint orbits},
url = {http://eudml.org/doc/76301},
volume = {43},
year = {1985},
}

TY - JOUR
AU - Dittmann, Jochen
AU - Rudolph, Gerd
TI - Canonical realizations of Lie algebras associated with foliated coadjoint orbits
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 43
IS - 3
SP - 251
EP - 267
LA - eng
KW - affine connection; leaves; Lagrangian foliation; symplectomorphism; foliated coadjoint orbits; canonical realizations of Lie algebras
UR - http://eudml.org/doc/76301
ER -

References

top
  1. [1] P. Cordero, G.C. Ghirardi, Realizations of Lie algebras and algebraic treatment of quantum problems, Fortschr. Phys., t. 20, 1972, p. 105-133. MR449223
  2. [2] L.M. Alonso, Group-theoretical foundations of classical and quantum mechanics. I. Observables associated with Lie algebras, J. Math. Phys., t. 18, 1977, p. 1577-1581. Zbl0373.22012MR673018
  3. [3] V. Guillemin, S. Sternberg, The moment map and collective motion, Ann. Phys., t. 127, 1, 1980, p. 220-257. Zbl0453.58015MR576424
  4. [4] A. Barut, R. Raczka, Theory of group representations and applications, Warszawa, PWN Polish Sci. Publ., 1977. Zbl0471.22021MR495836
  5. [5] P. Exner, M. Havlicek, W. Lassner, Canonical realizations of classical Lie algebras, Czech. J. Phys. B, t. 26, 1976, p. 1213-1228. Zbl0381.17008MR430006
  6. [6] I.M. Gelfand, A.A. Kirillov, Sur les corps lies aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math., t. 31, 1966, p. 509-523. Zbl0144.02104MR207918
  7. [7] A. Joseph, Minimal realizations and spectrum generating algebras, Comm. Math. Phys., t. 36, 36, 1974, p. 325-337. Zbl0285.17007MR342049
  8. [8] A.A., Kirillov, Эиеиенти теории представлений, изд. « Hayкa ». MOCКBa, 1972. 
  9. [9] B. Kostant, Quantization and unitary representations, in Lect. Notes Math., Vol. 170, Berlin-Heidelberg-New York, Springer-Verlag, 1972. Zbl0223.53028MR294568
  10. [10] D.J. Simms, N.M.J. Woodhouse, Lectures in geometric quantization, in Lect. Notes Phys., Vol. 53, Berlin-Heidelberg-New York, Springer-Verlag, 1976. Zbl0343.53023MR672639
  11. [11] A. Weinstein, Symplectic manifolds and their Lagrangean submanifolds, Advanc. Math., t. 6, 1971, p. 329-346. Zbl0213.48203MR286137
  12. [12] A. Weinstein, Lectures on symplectic manifolds, CBMS, no. 29, Rhode Island AMS, 1979. Zbl0406.53031MR598470
  13. [13] V. Guillemin, S. Sternberg, Geometric asymptotics, Math. surveys, no. 14, Rhode Island AMS, Providence, 1977. Zbl0364.53011MR516965
  14. [14] R. Bott, Lectures on characteristic classes and foliations, in Lect. Notes Math., t. 279, Berlin-Heidelberg-New York, Springer-Verlag, 1972. Zbl0241.57010MR362335
  15. [15] J. Kijowski, Geometrical structure of quantization, in Lect. Notes Math., t. 570, Berlin-Heidelberg-New York, Springer-Verlag, 1976. Zbl0347.53017MR461571
  16. [16] J. Dieudonné, Éléments d'Analyse, Tome 4, 2e édition, Gauthier-Villars Éditeur, Paris/Bruxelles/Montréal, 1974. 
  17. [17] M. Havliček, W. Lassner, Canonical realizations of the Lie algebras gl(n, R) and sl(n, R), Rep. Math. Phys., t. 8, no. 3, 1975. Zbl0324.17002MR409575
  18. [18] J. Dittmann, G. Rudolph, Canonical realizations of Lie algebras related to associated bundles, Proc. of the Conf. on Diff. Geom. and its Applic., Nové Mĕsto, 1983, p. 51-59. Zbl0564.58017MR793199
  19. [19] J. Dittmann, G. Rudolph, Konstruktion Kanonischer Realisierungen der Lie–Algebra sp(n, R) auf koadjungierten Orbits, Wiss. Z. KMU Leipzig, Math.- Naturwiss. R., t. 33, 1984, 1, p. 4-13. Zbl0539.58010MR742612
  20. [20] J. Dittmann, G. Rudolph, Canonical realizations of Lie algebras and coadjoint orbits. Part I. Lagrangean foliations of symplectic manifolds, prepr. KMU–OFT 06/82, Leipzig, 1982. 
  21. [21] J. Dittmann, G. Rudolph, Canonical realizations of Lie algebras and coadjoint orbits. Part II. Canonical realizations related to coadjoint orbits, prepr. KMU-QFT 03/83, Leipzig, 1983. Zbl0605.58023
  22. [22] P. Dazord, Sur la géométrie des sous-fibrés et des feuilletages lagrangiens, Ann. Scient. Ec. Norm. Sup.4e série, t. 13, 1981, p. 465-480. Zbl0491.58015MR654208
  23. [23] P. Dazord, Feuilletages en géométrie symplectique, C. R. Acad. Sci. Paris, t. 294, 1982, p. 489-491. Zbl0509.58035MR679560
  24. [24] P. Dazord, Feuilletages et mécanique hamiltonienne, Publ. Dép. Math. Univ. de Lyon, 1983, 3. B. Zbl0524.58016MR725514

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.