Compact manifold of coherent states invariant by semisimple Lie groups

A. Cavalli; G. D'Ariano; L. Michel

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 44, Issue: 2, page 173-193
  • ISSN: 0246-0211

How to cite

top

Cavalli, A., D'Ariano, G., and Michel, L.. "Compact manifold of coherent states invariant by semisimple Lie groups." Annales de l'I.H.P. Physique théorique 44.2 (1986): 173-193. <http://eudml.org/doc/76316>.

@article{Cavalli1986,
author = {Cavalli, A., D'Ariano, G., Michel, L.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {compact manifold; compact semisimple Lie groups; symmetric space},
language = {eng},
number = {2},
pages = {173-193},
publisher = {Gauthier-Villars},
title = {Compact manifold of coherent states invariant by semisimple Lie groups},
url = {http://eudml.org/doc/76316},
volume = {44},
year = {1986},
}

TY - JOUR
AU - Cavalli, A.
AU - D'Ariano, G.
AU - Michel, L.
TI - Compact manifold of coherent states invariant by semisimple Lie groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 173
EP - 193
LA - eng
KW - compact manifold; compact semisimple Lie groups; symmetric space
UR - http://eudml.org/doc/76316
ER -

References

top
  1. [1] R. Glauber, Phys. Rev., t. 131, 1966, p. 2766. MR161585
  2. [2] A.M. Perelomov, Commun. Math. Phys., t. 26, 1972, p. 222. M. Rasetti, Int. J. Theor. Phys., t. 13, 1973, p. 425. MR363209
  3. [3] H. Kuratsuji and T. Suzuki, Prog. Theor. Phys. Suppl., t. 74-75, 1983, p. 209. MR708872
  4. [4] G. D'Ariano, M. Rasetti and M. Vadacchino, J. Phys., t. 18 A, 1985, p. 1295. Zbl0577.58006
  5. [5] G. D'Ariano and M. Rasetti, Soliton equations τ-functions and coherent states, in Integrable Systems in Statistical Mechanics, G. D'Ariano, A. Montorsi and M. Rasetti eds., World Scientific, Singapore, 1985. MR826540
  6. [6] L. Michel, Rev. Mod. Phys., t. 52, 1980, p. 617. MR578143
  7. [7] G. D'Ariano and M. Rasetti, Phys. Lett., t. 107 A, 1985, p. 291. MR785121
  8. [8] R.N. Cahn, Semisimple Lie Algebras and Their Representations, BenjaminN. Y., 1984. Zbl0565.17003MR746790
  9. [9] J.P. Serre, Algèbre de Lie semisimple complexes, BenjaminN. Y., 1966. Zbl0144.02105
  10. [10] D. Luna, Invent. Math., t. 16, 1972, p. 1. Zbl0249.14016MR294351
  11. [11] D. Montgomery, Proc. Amer. Math. Soc., t. 1, 1950, p. 467. Zbl0041.36309
  12. [12] S. Helgason, Differential geometry and Symmetric Spaces, AcademicN. Y., 1962. Zbl0111.18101MR145455
  13. [13] M. Naimark, A. Stern, Theorie des Representation des Groups, MIRMoscou, 1979. 
  14. [14] V. Bargmann, Commun. pure and appl. Math., t. 14, 1961, p. 187. Zbl0107.09102MR157250
  15. [15] J. Patera and D. Sankoff, Table of branching rules for representations of simple Lie algebras, Presses de l'Université de Montréal, Montréal, 1980. MR450467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.