Itération des polynômes et propriétés d'orthogonalité

Pierre Moussa

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 44, Issue: 3, page 315-325
  • ISSN: 0246-0211

How to cite

top

Moussa, Pierre. "Itération des polynômes et propriétés d'orthogonalité." Annales de l'I.H.P. Physique théorique 44.3 (1986): 315-325. <http://eudml.org/doc/76321>.

@article{Moussa1986,
author = {Moussa, Pierre},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Julia set; Padé approximants; Brolin's equilibrium measure},
language = {fre},
number = {3},
pages = {315-325},
publisher = {Gauthier-Villars},
title = {Itération des polynômes et propriétés d'orthogonalité},
url = {http://eudml.org/doc/76321},
volume = {44},
year = {1986},
}

TY - JOUR
AU - Moussa, Pierre
TI - Itération des polynômes et propriétés d'orthogonalité
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 315
EP - 325
LA - fre
KW - Julia set; Padé approximants; Brolin's equilibrium measure
UR - http://eudml.org/doc/76321
ER -

References

top
  1. [1] G. Julia, Mémoire sur l'itération des fonctions rationnelles. J. Math. Pur. Appl., t. 7, 1918, p. 503-529; P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, t. 47, 1919, p. 161-271; t. 48, 1920, p. 33-94, t. 48, 1920, p. 208- 314. Zbl46.0520.06JFM46.0520.06
  2. [2] B. Mandelbrot, Fractal aspects of the iteration of z → λz(1 - z) for complex λ and z, Annals N. Y. Acad. Sci., t. 357, 1980, p. 249-259; On the quadratic mapping z → z2 - μ for complex μ and z, the fractal structure of its M set, and scaling, Physica, t. 7D, 1983, p. 224-239. Zbl0478.58017MR719054
  3. [3] D. Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sci., Paris, Sér. I, t. 294, 1982, p. 301-303 ; Quasi conformal homeomorphisms and dynamics I, II, III, preprint IHES, 1982-1983. Zbl0496.30016MR658395
  4. [4] A Douady, J.H. Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris, Sér. I, t. 294, 1982, 123-126; A. Douady, Systèmes dynamiques holomorphes. Séminaire Bourbaki, n° 599, Astérisque, t. 105-106, 1983, p. 39-63. MR651802
  5. [5] P. Blanchard, Complex analytical dynamics on the Riemann sphere, Bull. Amer. Math. Soc. t. 11, 1984, p. 85-141. Zbl0558.58017MR741725
  6. [6] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat., t. 6, 1965, p. 103-144; M.J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. Dynam. Syst., t. 3, 1983, p. 351-385. Zbl0127.03401MR194595
  7. [7] D. Bessis, M.L. Mehta, P. Moussa, Polynômes orthogonaux sur des ensembles de Cantor et itérations des transformations quadratiques, C. R. Acad. Sci, Paris, Sér. I, t. 293, 1981, p. 705-708. Zbl0493.33014MR650541
  8. [8] D. Bessis, M.L. Mehta, P. Moussa, Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings, Lett. Math. Phys., t. 6, 1982, p. 123-140. Zbl0483.33006MR651127
  9. [9] D. Bessis, P. Moussa, Orthogonality properties of iterated polynomial mappings, Comm. Math. Phys., t. 88, 1983, p. 503-529. Zbl0523.30019MR702566
  10. [10] J. Bellissard, D. Bessis, P. Moussa, Chaotic states of almost periodic Schrôdinger operators, Phys. Rev. Lett., t. 49, 1982, p. 701-704. MR669364
  11. [11] G. Baker, D. Bessis, P. Moussa, A family of almost periodic Schrôdinger operators, Physica, t. 124A, 1984, p. 61-78. Zbl0598.47054MR759169
  12. [12] M. Barnsley, J. Geronimo, A. Harrington, On the invariant sets of a family of quadratic maps. Commun. Math. Phys., t. 88, 1983, p. 479-501. Zbl0535.30024MR702565
  13. [13] M. Barnsley, J. Geronimo, A. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc., t. 7, 1982, p. 381-384. Zbl0509.30023MR663789
  14. [14] M. Barnsley, J. Geronimo, A. Harrington, Infinite dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc., t. 88, 1983, p. 625-630. Zbl0535.30025MR702288
  15. [15] M. Barnsley, J. Geronimo, A. Harrington, Geometry, electrostatic measures and orthogonal polynomials on Julia sets for polynomials, Ergod. Th. Dynam. Sys., t. 3, 1983, p. 509-520. Zbl0566.41033MR753919
  16. [16] G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ., t. 23, 1939. Zbl0023.21505JFM65.0278.03
  17. [17] G.A. Baker, Essentials of Pade Approximants, Academic Press, N. Y., 1975. Zbl0315.41014
  18. [18] T. Pitcher, J. Kinney, Some connections between ergodic theory and the iteration of polynomials, Ark, Mat., t. 8, 1968, p. 25-32. Zbl0195.35501MR263125
  19. [19] D. Bessis, J. Geronimo, P. Moussa, Mellin transforms associated with Julia sets and physical applications, J. Stat. Phys., t. 34, 1984, p. 75-110; Complex spectral dimensionality on fractal structures, J. Physique Lettres, t. 44, 1983, p. L977- L982. Zbl0602.58028MR739123
  20. [20] P. Moussa, Un opérateur de Schrôdinger presque périodique à spectre singulier associé aux itérations d'un polynôme, Comptes Rendus de la RCP 25 du CNRS, t. 34, 1984, p. 43-66, Publ. IRMA, Strasbourg. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.