Itération des polynômes et propriétés d'orthogonalité
Annales de l'I.H.P. Physique théorique (1986)
- Volume: 44, Issue: 3, page 315-325
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMoussa, Pierre. "Itération des polynômes et propriétés d'orthogonalité." Annales de l'I.H.P. Physique théorique 44.3 (1986): 315-325. <http://eudml.org/doc/76321>.
@article{Moussa1986,
author = {Moussa, Pierre},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Julia set; Padé approximants; Brolin's equilibrium measure},
language = {fre},
number = {3},
pages = {315-325},
publisher = {Gauthier-Villars},
title = {Itération des polynômes et propriétés d'orthogonalité},
url = {http://eudml.org/doc/76321},
volume = {44},
year = {1986},
}
TY - JOUR
AU - Moussa, Pierre
TI - Itération des polynômes et propriétés d'orthogonalité
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 44
IS - 3
SP - 315
EP - 325
LA - fre
KW - Julia set; Padé approximants; Brolin's equilibrium measure
UR - http://eudml.org/doc/76321
ER -
References
top- [1] G. Julia, Mémoire sur l'itération des fonctions rationnelles. J. Math. Pur. Appl., t. 7, 1918, p. 503-529; P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, t. 47, 1919, p. 161-271; t. 48, 1920, p. 33-94, t. 48, 1920, p. 208- 314. Zbl46.0520.06JFM46.0520.06
- [2] B. Mandelbrot, Fractal aspects of the iteration of z → λz(1 - z) for complex λ and z, Annals N. Y. Acad. Sci., t. 357, 1980, p. 249-259; On the quadratic mapping z → z2 - μ for complex μ and z, the fractal structure of its M set, and scaling, Physica, t. 7D, 1983, p. 224-239. Zbl0478.58017MR719054
- [3] D. Sullivan, Itération des fonctions analytiques complexes, C. R. Acad. Sci., Paris, Sér. I, t. 294, 1982, p. 301-303 ; Quasi conformal homeomorphisms and dynamics I, II, III, preprint IHES, 1982-1983. Zbl0496.30016MR658395
- [4] A Douady, J.H. Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris, Sér. I, t. 294, 1982, 123-126; A. Douady, Systèmes dynamiques holomorphes. Séminaire Bourbaki, n° 599, Astérisque, t. 105-106, 1983, p. 39-63. MR651802
- [5] P. Blanchard, Complex analytical dynamics on the Riemann sphere, Bull. Amer. Math. Soc. t. 11, 1984, p. 85-141. Zbl0558.58017MR741725
- [6] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat., t. 6, 1965, p. 103-144; M.J. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. Dynam. Syst., t. 3, 1983, p. 351-385. Zbl0127.03401MR194595
- [7] D. Bessis, M.L. Mehta, P. Moussa, Polynômes orthogonaux sur des ensembles de Cantor et itérations des transformations quadratiques, C. R. Acad. Sci, Paris, Sér. I, t. 293, 1981, p. 705-708. Zbl0493.33014MR650541
- [8] D. Bessis, M.L. Mehta, P. Moussa, Orthogonal polynomials on a family of Cantor sets and the problem of iterations of quadratic mappings, Lett. Math. Phys., t. 6, 1982, p. 123-140. Zbl0483.33006MR651127
- [9] D. Bessis, P. Moussa, Orthogonality properties of iterated polynomial mappings, Comm. Math. Phys., t. 88, 1983, p. 503-529. Zbl0523.30019MR702566
- [10] J. Bellissard, D. Bessis, P. Moussa, Chaotic states of almost periodic Schrôdinger operators, Phys. Rev. Lett., t. 49, 1982, p. 701-704. MR669364
- [11] G. Baker, D. Bessis, P. Moussa, A family of almost periodic Schrôdinger operators, Physica, t. 124A, 1984, p. 61-78. Zbl0598.47054MR759169
- [12] M. Barnsley, J. Geronimo, A. Harrington, On the invariant sets of a family of quadratic maps. Commun. Math. Phys., t. 88, 1983, p. 479-501. Zbl0535.30024MR702565
- [13] M. Barnsley, J. Geronimo, A. Harrington, Orthogonal polynomials associated with invariant measures on Julia sets, Bull. Amer. Math. Soc., t. 7, 1982, p. 381-384. Zbl0509.30023MR663789
- [14] M. Barnsley, J. Geronimo, A. Harrington, Infinite dimensional Jacobi matrices associated with Julia sets, Proc. Amer. Math. Soc., t. 88, 1983, p. 625-630. Zbl0535.30025MR702288
- [15] M. Barnsley, J. Geronimo, A. Harrington, Geometry, electrostatic measures and orthogonal polynomials on Julia sets for polynomials, Ergod. Th. Dynam. Sys., t. 3, 1983, p. 509-520. Zbl0566.41033MR753919
- [16] G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ., t. 23, 1939. Zbl0023.21505JFM65.0278.03
- [17] G.A. Baker, Essentials of Pade Approximants, Academic Press, N. Y., 1975. Zbl0315.41014
- [18] T. Pitcher, J. Kinney, Some connections between ergodic theory and the iteration of polynomials, Ark, Mat., t. 8, 1968, p. 25-32. Zbl0195.35501MR263125
- [19] D. Bessis, J. Geronimo, P. Moussa, Mellin transforms associated with Julia sets and physical applications, J. Stat. Phys., t. 34, 1984, p. 75-110; Complex spectral dimensionality on fractal structures, J. Physique Lettres, t. 44, 1983, p. L977- L982. Zbl0602.58028MR739123
- [20] P. Moussa, Un opérateur de Schrôdinger presque périodique à spectre singulier associé aux itérations d'un polynôme, Comptes Rendus de la RCP 25 du CNRS, t. 34, 1984, p. 43-66, Publ. IRMA, Strasbourg.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.