Partial *-algebras of closed operators and their commutants. II. Commutants and bicommutants

J.-P. Antoine; F. Mathot; C. Trapani

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 46, Issue: 3, page 325-351
  • ISSN: 0246-0211

How to cite

top

Antoine, J.-P., Mathot, F., and Trapani, C.. "Partial *-algebras of closed operators and their commutants. II. Commutants and bicommutants." Annales de l'I.H.P. Physique théorique 46.3 (1987): 325-351. <http://eudml.org/doc/76362>.

@article{Antoine1987,
author = {Antoine, J.-P., Mathot, F., Trapani, C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {algebras of unbounded operators; partial algebras; partial *-algebra; closable operators on a fixed dense domain of a Hilbert space; strong and weak partial -algebras; commutants; bicommutants; partial -algebras; extensions},
language = {eng},
number = {3},
pages = {325-351},
publisher = {Gauthier-Villars},
title = {Partial *-algebras of closed operators and their commutants. II. Commutants and bicommutants},
url = {http://eudml.org/doc/76362},
volume = {46},
year = {1987},
}

TY - JOUR
AU - Antoine, J.-P.
AU - Mathot, F.
AU - Trapani, C.
TI - Partial *-algebras of closed operators and their commutants. II. Commutants and bicommutants
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 325
EP - 351
LA - eng
KW - algebras of unbounded operators; partial algebras; partial *-algebra; closable operators on a fixed dense domain of a Hilbert space; strong and weak partial -algebras; commutants; bicommutants; partial -algebras; extensions
UR - http://eudml.org/doc/76362
ER -

References

top
  1. [1] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer Verlag, Berlin et al., 1979. Zbl0421.46048MR611508
  2. [2] H.J. Borchers and J. Yngvason, Commun. Math. Phys., t. 42, 1975, p. 231. Zbl0307.46053MR377550
  3. [3] D. Ruelle, Helv. Phys. Acta., t. 35, 1962, p. 147. Zbl0158.45702MR141406
  4. [4] A.N. Vasil'ev, Theor. Math. Phys., t. 2, 1970, p. 113. 
  5. [5] S. Gudder and W. Scruggs, Pacific J. Math., t. 70, 1977, p. 369. Zbl0374.46045MR482269
  6. [6] A. Inoue, Proc. Amer. Math. Soc., t. 69, 1978, p. 97. Zbl0377.46057MR473863
  7. [7] G. Epifanio and C. Trapani, J. Math. Phys., t. 25, 1984, p. 2633. Zbl0556.47026MR756559
  8. [8] F. Mathot, J. Math. Phys., t. 26, 1985, p. 1118. Zbl0614.47034MR790044
  9. [9] J.-P. Antoine and F. Mathot, Ann. Inst. H. Poincaré, t. 46, 1987, p. 299 (preceeding paper). Zbl0629.46048MR892367
  10. [10] J.-P. Antoine and W. Karwowski, Publ. RIMS, Kyoto Univ., t. 21, 1985, p. 205 ; Addendum, ibid., t. 22, 1986, p. 507. Zbl0609.47058
  11. [11] J.-P. Antoine, in Spontaneous Symmetry Breakdown and Related Subjects (Karpacz 1985), p. 247-267 ; L. Michel, J. Mozrzymas and A. Pekalski (eds), World Scientific, Singapore, 1985. MR835511
  12. [12] H. Araki and J.-P. Jurzak, Publ. RIMS, Kyoto Univ., t. 18, 1982, p. 1013. Zbl0511.47029MR688942
  13. [13] J.-P. Antoine and A. Grossmann, J. Funct. Anal., t. 23, 1976, p. 369, 379. Zbl0359.46020
  14. [14] J. Shabani, J. Math. Phys., t. 25, 1984, p. 3204 ; On some classes of unbounded commutants of unbounded operator families, Preprint ICTP-Trieste IC/85/175. Zbl0647.47046MR761840
  15. [15] A.V. Voronin, V.N. Sushko and S.S. Khoruzhii, Theor. Math. Phys., t. 59, 1984, p. 335 ; t. 60, 1984, p. 849. Zbl0559.47033
  16. [16] K. Schmudgen, Unbounded commutants and intertwining spaces of unbounded symmetric operators and*-representations, Preprint Karl-Marx-Universität, Leipzig, 1985. MR879700
  17. [17] A. Inoue, H. Ueda and T. Yamauchi, J. Math. Phys., t. 28, 1987, p. 1. Zbl0624.47045MR870094
  18. [18] S. Stratila and L. Zsido, Lectures on von Neumann Algebras, Editura Academiei, Bucuresti, and Abacus Press, Tunbridge Wells, 1979. Zbl0391.46048MR526399
  19. [19] R.T. Powers, Commun. Math. Phys., t. 21, 1971, p. 85 ; Trans. Amer. Math. Soc., t. 187, 1974, p. 261. Zbl0214.14102MR283580
  20. [20] J.-P. Antoine, G. Epifanio and C. Trapani, Helv. Phys. Acta, t. 56, 1983, p. 1175. MR734580
  21. [21] F. Mathot, Integral decomposition of partial *-algebras of closed operators, Publ. RIMS, Kyoto Univ., t. 22, 1986 in press. Zbl0636.47037MR871263
  22. [22] G. Lassner, Rep. Math. Phys., t. 3, 1972, p. 279. Zbl0252.46087MR322527
  23. [23] G. Lassner and B. Timmermann, Rep. Math. Phys., t. 11, 1977, p. 81. Zbl0357.46067MR482265
  24. [24] H.J. Borchers, Nuovo Cim., t. 24, 1962, p. 214 ; in Statistical Mechanics and Field Theory, p. 31-79 ; R. N. Sen and C. Weil (eds), J. Wiley, Chichester1972. Zbl0129.42205MR142320
  25. [25] J. Yngvason, Commun. Math. Phys., t. 34, 1973, p. 315. Zbl0269.46031MR334750
  26. [26] G. Hoffmann, Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., t. 31, 1982, p. 35. 
  27. [27] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, Berlin et al., 1980. Zbl0434.47001MR566954
  28. [28] A. Inoue, Pacific J. Math., t. 69, 1977, p. 105. Zbl0342.46057MR512384
  29. [29] F. Debacker-Mathot, Commun. Math. Phys., t. 71, 1980, p. 47. Zbl0426.47025MR556900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.