Arrival time observables in quantum mechanics

Reinhard Werner

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 47, Issue: 4, page 429-449
  • ISSN: 0246-0211

How to cite

top

Werner, Reinhard. "Arrival time observables in quantum mechanics." Annales de l'I.H.P. Physique théorique 47.4 (1987): 429-449. <http://eudml.org/doc/76386>.

@article{Werner1987,
author = {Werner, Reinhard},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Arrival time observables; contraction semigroup; absorption; covariant observable; scattering theory},
language = {eng},
number = {4},
pages = {429-449},
publisher = {Gauthier-Villars},
title = {Arrival time observables in quantum mechanics},
url = {http://eudml.org/doc/76386},
volume = {47},
year = {1987},
}

TY - JOUR
AU - Werner, Reinhard
TI - Arrival time observables in quantum mechanics
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 429
EP - 449
LA - eng
KW - Arrival time observables; contraction semigroup; absorption; covariant observable; scattering theory
UR - http://eudml.org/doc/76386
ER -

References

top
  1. [1] G. Ludwig, Foundation of quantum mechanics (2 vol.), Springer, Berlin, 1983 and 1985. MR796133
  2. [2] E.B. Davies, Quantum theory of open systems. Academic, London, 1976. Zbl0388.46044MR489429
  3. [3] R. Werner, « Screen Observables in relativistic and nonrelativistic quantum mechanics ». J. Math. Phys., t. 27, 1986, p. 793-803. MR825166
  4. [4] E.B. Davies, Non-unitary scattering and capture. Part I: Quantum dynamical semi–group theory. Ann. Inst. H. Poincaré, t. 32 A, 1980, p. 361-375. Zbl0445.47006MR594635
  5. [5] R. Haag, D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 848-861. Zbl0139.46003MR165864
  6. [6] K.-E. Hellwig, K. Kraus, Formal description of measurements in local quantum field theory. Phys. Rev., t. D 1, 1970, p. 566-571. 
  7. [7] R. Werner, Local preparability and the split property in quantum field theory. Lett. Math. Phys., t. 13, 1987, p. 325-329. Zbl0649.46063MR895295
  8. [8] R. Alicki, M. Fannes, A. Verbeure, Unstable particles and the Poincaré semigroup in quantum field theory. Preprint, Leuven, 1985. Zbl0619.46057MR841178
  9. [9] E.B. Davies, One-parameter semigroups. Academic, London, 1980. Zbl0457.47030MR591851
  10. [10] Ph.A. Martin, Scattering theory with dissipative interactions and time delay. Nuovo Cim., t. 30 B, 1975, p. 217-238. MR468891
  11. [11] E.B. Davies, Non-unitary scattering and capture. Part I: Hilbert space theory. Commun. Math. Phys., t. 71, 1980, p. 277-288. Zbl0428.47006MR565282
  12. [12] H. Neidhart, A dissipative scattering theory. In: H. Helson, B. Sz. Nagy, F.-H. Vasilescu, D. Voiculescu (eds.): « Spectral theory of linear operators and related topics », Birkhäuser, Basel, 1984. Zbl0584.47008
  13. [13] N.I. Achiezer, I.M. Glazman, Theory of linear operators in Hilbert space, vol. 2, Pitman, London, 1981. Zbl0467.47001
  14. [14] J.M. Jauch, R. Lavine, R.G. Newton, Scattering into cones. Helv. Phys. Acta, t. 45, 1972, p. 325-330. MR418733

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.