Unbounded representations of a *-algebra on indefinite metric space

Schôichi Ôta

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 4, page 333-353
  • ISSN: 0246-0211

How to cite

top

Ôta, Schôichi. "Unbounded representations of a *-algebra on indefinite metric space." Annales de l'I.H.P. Physique théorique 48.4 (1988): 333-353. <http://eudml.org/doc/76405>.

@article{Ôta1988,
author = {Ôta, Schôichi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {unbounded representations of a *-algebra on an indefinite inner; product space; unbounded J-representations; similarity between a non *- representation and a *-representation; unbounded representations of a *- algebra on an indefinite inner product space},
language = {eng},
number = {4},
pages = {333-353},
publisher = {Gauthier-Villars},
title = {Unbounded representations of a *-algebra on indefinite metric space},
url = {http://eudml.org/doc/76405},
volume = {48},
year = {1988},
}

TY - JOUR
AU - Ôta, Schôichi
TI - Unbounded representations of a *-algebra on indefinite metric space
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 333
EP - 353
LA - eng
KW - unbounded representations of a *-algebra on an indefinite inner; product space; unbounded J-representations; similarity between a non *- representation and a *-representation; unbounded representations of a *- algebra on an indefinite inner product space
UR - http://eudml.org/doc/76405
ER -

References

top
  1. [1] T. Ando, Linear operators on Krein spaces. Lectures Note in Hokkaido Univ., 1979. Zbl0429.47016MR560903
  2. [2] J. Bognar, Indefinite inner product spaces. Berlin, Springer Verlag, 1974. Zbl0286.46028MR467261
  3. [3] H.J. Borchers, Algebraic aspects of Wighttman field theory in Statistical Mechanics and Field Theory Lectures, 1971, New York, Jerusalem, London, 1972. Zbl0264.46061
  4. [4] H.J. Borchers and J. Yungvason, Commun. Math. Phys., t. 42, 1975, p. 231-252. Zbl0307.46053MR377550
  5. [5] Yu. Dadashyan and S.S. Khoruzhii, Theor. Math. Phys., t. 54, 1983, p. 35-48. Zbl0536.47035
  6. [6] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics, Berlin, Springer Verlag, 1979. Zbl0421.46048MR545651
  7. [7] S. Gudder and W. Scruggs, Pacific J. Math., t. 70, 1977, p. 369-382. Zbl0374.46045MR482269
  8. [8] U. Haagerup, Ann. Math., t. 118, 1983, p. 215-224. Zbl0543.46033MR717823
  9. [9] A. Inoue and K. Takesue, Trans. Amer. Math., t. 280, 1983, p. 393-400. Zbl0529.47038MR712267
  10. [10] I.S. Iohividov, M.G. Krein and H. Langer, Introduction to the spectral theory of operators in spaces with indefinite metric, Berlin, Akademie Verlag, 1982. Zbl0506.47022MR691137
  11. [11] A.Z. Jadczyk, Rep. Math. Phys., t. 2, 1971, p. 263-276. Zbl0228.47018
  12. [12] L. Jakobczyk, J. Math. Phys., t. 25, 1984, p. 617-622. MR737311
  13. [13] L. Jakobczyk, Ann. Phys., t. 161, 1985, p. 314-336. Zbl0579.46015MR793818
  14. [14] G. Lassner, Rep. Math. Phys., t. 3, 1972, p. 270-293. Zbl0252.46087
  15. [15] N.A. Naimark, Linear representations of the Lorentz groups, London, Pergamon, 1964. 
  16. [16] S. Ôta, Acta Sci. Math. (Szeged), t. 39, 1977, p. 129-133. MR440377
  17. [17] S. Ôta, J. Funct. Anal., t. 30, 1978, p. 238-244. Zbl0388.46040MR515227
  18. [18] S. Ôta, J. Reine Angew. Math., t. 347, 1984, p. 21-32. Zbl0516.46042MR733045
  19. [19] R.S. Phillips, The extension of dual subspaces invariant under algebra. Proc. Inter. Symp. On Linear Spaces. Jerusalem, 1960, p. 366-398. Zbl0115.33003MR133686
  20. [20] R.T. Powers, Commun. Math. Phys., t. 21, 1971, p. 85-124. Zbl0214.14102MR283580
  21. [21] R.T. Powers, Trans. Amer. Math. Soc., t. 187, 1974, p. 261-293. Zbl0296.46059MR333743
  22. [22] S. Sakai, C*-algebras and W*-algebras, Berlin, Springer Verlag, 1971. Zbl0219.46042MR1490835
  23. [23] K. Schmüdgen, Publ. R. I. M. S. (Kyoto), t. 19, 1983, p. 601-671. Zbl0557.47023MR716970
  24. [24] A.N. Vasl'ev, Theor. Math. Phys., t. 2, 1970, p. 113-123. 
  25. [25] A.H. Völkel, J. Math. Phys., t. 26, 1985, p. 2956-2973. Zbl0582.22018MR808512
  26. [26] A.H. Völkel, J. Math. Phys., t. 27, 1986, p. 1113-1127. Zbl0592.22018MR832798
  27. [27] G. Warner, Harmonic analysis on semi-simple Lie groups I, Berlin, Springer Verlag, 1972. Zbl0265.22020MR498999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.