Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions
Stephen J. Summers; Reinhard Werner
Annales de l'I.H.P. Physique théorique (1988)
- Volume: 49, Issue: 2, page 215-243
- ISSN: 0246-0211
Access Full Article
topHow to cite
topSummers, Stephen J., and Werner, Reinhard. "Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions." Annales de l'I.H.P. Physique théorique 49.2 (1988): 215-243. <http://eudml.org/doc/76413>.
@article{Summers1988,
author = {Summers, Stephen J., Werner, Reinhard},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Bell's inequalities; quantum field theory; maximally correlated Von Neumann algebras; complementary wedge algebras; tangent double cone algebras; algebras for tangent space time regions; field theories with a scaling limit},
language = {eng},
number = {2},
pages = {215-243},
publisher = {Gauthier-Villars},
title = {Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions},
url = {http://eudml.org/doc/76413},
volume = {49},
year = {1988},
}
TY - JOUR
AU - Summers, Stephen J.
AU - Werner, Reinhard
TI - Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 215
EP - 243
LA - eng
KW - Bell's inequalities; quantum field theory; maximally correlated Von Neumann algebras; complementary wedge algebras; tangent double cone algebras; algebras for tangent space time regions; field theories with a scaling limit
UR - http://eudml.org/doc/76413
ER -
References
top- [1] C. D'Antoni and R. Longo, Interpolation by type I factors and the flip automorphism. J. Funct. Anal., t. 51, 1983, p. 361-371. Zbl0535.46036MR703083
- [2] C. D'Antoni, D. Buchholz and K. Fredenhagen, The universal structure of local algebras. Commun. Math. Phys., t. 111, 1987, p. 123-135. Zbl0645.46048MR896763
- [3] H. Araki, Local quantum theory, I. In: Local Quantum Theory, ed. R. Jost, Academic Press, New York, 1969.
- [4] H. Araki, Asymptotic ratio set and property L'λ. Publ. RIMS, Kyoto Univ., t. 6, 1970-1071, p. 443-460. Zbl0231.46100MR308800
- [5] H. Araki and E.J. Woods, A classification of factors. Publ. RIMS, Kyoto Univ., t. 4, 1968, p. 51-130. Zbl0206.12901MR244773
- [6] D. Buchholz, Product states for local algebras. Commun. Math. Phys., t. 36, 1974, p. 287-304. Zbl0289.46050MR345546
- [7] D. Buchholz and K. Fredenhagen, Locality and the structure of particle states. Commun. Math. Phys., t. 84, 1982, p. 1-54. Zbl0498.46061MR660538
- [8] D. Buchholz and E.H. Wichmann, Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys., t. 106, 1986, p. 321-344. Zbl0626.46064MR855315
- [9] D. Buchholz, S. Doplicher and R. Longo, On Noether's theorem in quantum field theory. Ann. Phys., t. 170, 1986, p. 1-17. Zbl0609.46037MR848392
- [10] B.S. Cirel'son, Quantum generalizations of Bell's inequalities. Lett. Math. Phys., t. 4, 1980, p. 93-100. MR577178
- [11] A. Connes and E. Størmer, Homogeneity of the state space of factors of type III1. J. Funct. Anal., t. 28, 1978, p. 187-196. Zbl0408.46048MR470689
- [12] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations, I, II. Commun. Math. Phys., t. 13, 1969, p. 1-23 and t. 15, 1969, p. 173- 200. Zbl0175.24704MR258394
- [13] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras. Invent. Math., t. 75, 1984, p. 493-536. Zbl0539.46043MR735338
- [14] W. Driessler, Comments on lightlike translations and applications in relativistic quantum field theory. Commun. Math. Phys., t. 44, 1975, p. 133-141. Zbl0306.46076MR416336
- [15] W. Driessler, On the type of local algebras in quantum field theory. Commun. Math. Phys., t. 53, 1977, p. 295-297. Zbl0348.46055MR473853
- [16] W. Driessler, On the structure of fields and algebras on null planes, I, Local algebras. Acta Phys. Austr., t. 46, 1977, p. 63-96. MR468834
- [17] W. Driessler, Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys., t. 70, 1979, p. 213-220. Zbl0427.46047MR554492
- [18] W. Driessler and S.J. Summers, Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group. Ann. Inst. Henri Poincaré, t. A 43, 1985, p. 147-166. Zbl0609.47059MR817532
- [19] W. Driessler and S.J. Summers, On the decomposition of relativistic quantum field theories into pure phases. Helv. Phys. Acta, t. 59, 1986, p. 331-348. MR845432
- [20] W. Driessler, S.J. Summers and E.H. Wichmann, On the connection between quantum fields and von Neumann algebras of local operators. Commun. Math. Phys., t. 105, 1986, p. 49-84. Zbl0595.46062MR847127
- [21] J.-P. Eckmann and J. Fröhlich, Unitary equivalence of local algebras in the quasi-free representation. Ann. Inst. Henri Poincaré, t. A 20, 1974, p. 201-209. Zbl0287.46077MR400966
- [22] J.D. Fabrey, Exponential representations of the canonical commutation relations. Commun. Math. Phys., t. 19, 1970, p. 1-30. Zbl0197.26302MR272311
- [23] K. Fredenhagen, On the modular structure of local algebras of observables. Commun. Math. Phys., t. 97, 1985, p. 79-89. Zbl0582.46067MR782959
- [24] J. Glimm and A. Jaffe, The λ(φ4)2 quantum field theory without cutoffs. III. The physical vacuum. Acta Math., t. 125, 1970, p. 204-267. MR269234
- [25] R. Haag and D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 848-861. Zbl0139.46003MR165864
- [26] P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys., t. 84, 1982, p. 71-85. Zbl0491.46060MR660540
- [27] P.D. Hislop, Conformal covariance, modular structure and duality for local algebras in free massless quantum field theories, preprint, University of California, 1987. MR965577
- [28] L.J. Landau, On the violation of Bell's inequality in quantum theory. Phys. Lett., t. 120 A, 1987, p. 54-56. MR879718
- [29] O.A. Nielsen, The asymptotic ratio set and direct integral decompositions of a von Neumann algebra. Can. J. Math., t. 23, 1971, p. 598-607. Zbl0217.16902MR298433
- [30] R.T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math., t. 86, 1967, p. 138-171. Zbl0157.20605MR218905
- [31] R.T. Powers, UHF algebras and their applications to representations of the anticommutation relations. In: Cargèse Lectures in Physics, Vol. 4, ed. D. Kastler, Gordon and Breach, New York, London, Paris, 1970.
- [32] J.E. Roberts, Some applications of dilatation invariance to structural questions in the theory of local observables. Commun. Math. Phys., t. 37, 1974, p. 273-286. Zbl0292.46031MR368650
- [33] H. Roos, Independence of local algebras in quantum field theory. Commun. Math. Phys., t. 16, 1970, p. 238-246. Zbl0197.26303MR266539
- [34] S. Sakai, C*-Algebras and W*-Algebras. Springer-Verlag, New York, Berlin, Heidelberg, 1971. Zbl0219.46042MR442701
- [35] S. Schlieder, Einige Bemerkungen über Projektionsoperatoren. Commun. Math. Phys., t. 13, 1969, p. 216-225. Zbl0179.58001MR250617
- [36] R. Schrader, A Yukawa quantum field theory in two spacetime dimensions without cutoffs. Ann. Phys., t. 70, 1972, p. 412-457. MR302088
- [37] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics, And All That, New York, Benjamin, 1964. Zbl0135.44305MR161603
- [38] S.J. Summers, Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys., t. 86, 1982, p. 111-141. Zbl0505.46051MR678005
- [39] S.J. Summers and R. Werner, The vacuum violates Bell's inequalities. Phys. Lett., t. 110 A, 1985, p. 257-259. MR803854
- [40] S.J. Summers and R. Werner, Bell's inequalities and quantum field theory, I. General setting. J. Math. Phys., t. 28, 1987, p. 2440-2447. Zbl0648.46066MR908015
- [41] S.J. Summers and R. Werner, Bell's inequalities and quantum field theory, II. Bell's inequalities are maximally violated in the vacuum. J. Math. Phys., t. 28, 1987, p.2448-2456. Zbl0648.46067MR908016
- [42] S.J. Summers and R. Werner, Maximal violation of Bell's inequalities is generic in quantum field theory. Commun. Math. Phys., t. 110, 1987, p. 247-259. Zbl0626.46056MR887998
- [43] M. Takesaki, Theory of Operator Algebras, I. Springer-Verlag, New York, Berlin, Heidelberg, 1979. Zbl0436.46043
- [44] M. Takesaki, Conditional expectations in von Neumann algebras. J. Funct. Anal., t. 9, 1972, p. 306-321. Zbl0245.46089MR303307
- [45] D. Testard, Asymptotic ratio set of von Neumann algebras generated by temperature states in statistical mechanics. Rep. Math. Phys., t. 12, 1977, p. 115-118. Zbl0385.46039MR468970
- [46] R. Werner, Local preparability of states and the split property in quantum field theory. Lett. Math. Phys., t. 13, 1987, p. 325-329. Zbl0649.46063MR895295
- [47] A.S. Wightman, La théorie quantique locale et la théorie quantique des champs. Ann. Inst. Henri Poincaré, t. A1, 1964, p. 403-420. Zbl0128.45803MR197086
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.