Topological and algebraic aspects of quantization : symmetries and statistics
E. C. G. Sudarshan; Tom D. Imbo; Chandni Shah Imbo
Annales de l'I.H.P. Physique théorique (1988)
- Volume: 49, Issue: 3, page 387-396
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [2] C.J. Isham, in Relativity, Groups and Topology II, edited by B. S. DeWitt and R. Stora (Elsevier, New York, 1984), and references therein.
- [5] T.D. Imbo, C. Shah Imbo and E.C.G. Sudarshan, Center for Particle Theory. Report, No. DOE-ER40200-142, 1988.
- [7] B. Kostant, in Lecture Notes in Mathematics, vol. 170 (Springer Verlag, Berlin, 1970).
- [8] M.G.G. Laidlaw and C.M. Dewitt, Phys. Rev., t. D 3, 1971, p. 1375 ; M.G.G. Laidlaw, Ph. D. Thesis, University of North Carolina, 1971.
- [9] E.C.G. Sudarshan, T.D. Imbo and T.R. Govindarajan, Phys. Lett., t. B 213, 1988, p. 471. MR967734
- [10] T.D. Imbo and E.C.G. Sudarshan, Phys. Rev. Lett., t. 60, 1988, p. 481. MR925746
- [11] A group G is called perfect if [G, G] = G where [G, G] is the commutator (or derived) subgroup of G. See, for example, D.J.S. Robinson, A Course in the Theory of Groups (Springer Verlag, New York, 1982). Zbl0483.20001
- [12] E. Fadell and L. Neuwirth, Math. Scand., t. 10, 1962, p. 111. Zbl0136.44104MR141126
- [13] R. Fox and L. Neuwirth, Math. Scand., t. 10, 1962, p. 119 ; J.S. Birman, Braids, Links and Mapping Class Groups (Princeton University Press, Princeton, 1974), and references therein. Zbl0117.41101MR150755
- [14] T.D. Imbo and C. Shah Imbo, Center for Particle Theory. Report, in preparation.
- [15] Y.-S. Wu, Phys. Rev. Lett., t. 52, 1984, p. 2103. MR746736
- [16] D.J. Thouless and Y.-S. Wu, Phys. Rev., t. B 31, 1985, p. 1191.
- [17] J.S. Dowker, J. Phys., t. A 18, 1985, p. 3521. Zbl0592.60095MR822912
- [18] J.S. Lomont, Applications of Finite Groups (Academic Press, New York, 1959). Zbl0085.25403MR102552
- [19] F.J. Bloore, I. Bratley and J.M. Selig, J. Phys., t. A 16, 1983, p. 729 ; R.D. Sorkin, in Topological Properties and Global Structure of Space-Time, edited by P. G. Bergmann and V. de Sabbata (Plenum, New York, 1986); H.S. Green, Phys. Rev., t. 90, 1953, p. 270. MR706191
- [20] E. Artin, Abh. Math. Sem. Hamburg, t. 4, 1926, p. 47. JFM51.0450.01
- [21] B3(R2) is torsion-free and is also isomorphic to the group of the trefoil knot. For more on braids and knots see D.L. Johnson, Topics in the Theory of Group Presentations (Cambridge University Press, Cambridge, 1980), and J. S. BIRMAN in Ref. 13. Zbl0437.20026
- [22] J.A.H. Shepperd, Proc. Roy. Soc. London, t. A 265, 1962, p. 229. Zbl0103.39504MR133125
- [23] A.H. Clifford, Ann. Math., t. 38, 1937, p. 533. Zbl0017.29705JFM63.0076.04
- [24] E. Fadell and J. Van Buskirk, Duke Math. Jour, t. 29, 1962, p. 243 ; J. Van Buskirk, Trans. Amer. Math. Soc., t. 122, 1966, p. 81. Zbl0122.17804MR141128
- [25] See Refs. 7 and 8, as well as D. Finkelstein, J. Math. Phys., t. 7, 1966, p. 1218 ; D. Finkelstein and J. Rubinstein, J. Math. Phys., t. 9, 1968, p. 1762; L.S. Schulman, Phys. Rev., t. 176, 1968, p. 1558 ; J. Math. Phys., t. 12, 1971, p. 304; J.S. Dowker, J. Phys., t. A 5, 1972, p. 936.
- [26] Further references on nonscalar quantizations are, A.P. Balachandran, Nucl. Phys., t. B 271, 1986, p. 227; Syracuse University Report No. SU-4428-361, 1987 ; Syracuse University Report No. SU-4428-373, 1988 ; as well as Ref. 2.