On stability for time-periodic perturbations of harmonic oscillators

Min-Jei Huang

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 3, page 229-238
  • ISSN: 0246-0211

How to cite

top

Huang, Min-Jei. "On stability for time-periodic perturbations of harmonic oscillators." Annales de l'I.H.P. Physique théorique 50.3 (1989): 229-238. <http://eudml.org/doc/76446>.

@article{Huang1989,
author = {Huang, Min-Jei},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {harmonic oscillators; monodromy operator; point spectrum},
language = {eng},
number = {3},
pages = {229-238},
publisher = {Gauthier-Villars},
title = {On stability for time-periodic perturbations of harmonic oscillators},
url = {http://eudml.org/doc/76446},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Huang, Min-Jei
TI - On stability for time-periodic perturbations of harmonic oscillators
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 229
EP - 238
LA - eng
KW - harmonic oscillators; monodromy operator; point spectrum
UR - http://eudml.org/doc/76446
ER -

References

top
  1. [1] J. Bellissard, Stability and Instability in Quantum Mechanics, in Schrödinger Operators, ed. by S. Graffi. Lecture Notes in Mathematics, 1159, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1985. Zbl0581.35078MR853743
  2. [2] M. Combescure, A Quantum Particle in a Quadrupole Radio-Frequency Trap. Ann. Inst. H. Poincaré, Sec. A, t. 44, 1986, p. 293-314. Zbl0613.46064MR846470
  3. [3] M. Combescure, Trapping of Quantum Particles for a class of Time-Periodic Potentials : A Semi-Classical Approach, Ann. of Physics, t. 173, 1987, p. 210-225. Zbl0634.35062MR870892
  4. [4] M. Combescure, The Quantum Stability Problem for Time-Periodic Perturbations of the Harmonic OscillatorAnn. Inst. H. Poincaré, Sec. A, t. 47, 1987, p. 63-83. Zbl0628.70017MR912757
  5. [5] V. Enss and K. Veselic, Bound States and Propagating States for Time-Dependent Hamiltonians. Ann. Inst. H. Poincaré, Sec. A, t. 39, 1983, p. 159-191. Zbl0532.47007MR722684
  6. [6] J.K. Hale, Ordinary Differential Equations, John Wiley and Sons, New York/London/ Sydney, 1969. Zbl0186.40901MR419901
  7. [7] T. Kato, Linear Evolution Equations of Hyperbolic Type, J. Fac. Sci. Univ. Tokyo, Sec. IA, t. 17, 1970, p. 241-258. Zbl0222.47011MR279626
  8. [8] M.G. Krein, On Certain Problems on the Maximum and Minimum of Characteristic Values and the Lyapunov Zones of Stability. Amer. Math. Soc. Transl., t. 1, 1955, p. 163-187. Zbl0066.33404MR73776
  9. [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, t. 2, Fourier Analysis, Self-Adjointness, Academic Press, New York/San Francisco/London, 1975. Zbl0308.47002
  10. [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics, t. 4, Analysis of Operators, Academic Press, New York/San Francisco/London, 1978. Zbl0401.47001
  11. [11] V.A. Yakubovich and V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, t. 2, John Wiley and Sons, New York/Toronto, 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.