Bound states and propagating states for time-dependent hamiltonians

Volker Enss; Krešimir Veselić

Annales de l'I.H.P. Physique théorique (1983)

  • Volume: 39, Issue: 2, page 159-191
  • ISSN: 0246-0211

How to cite

top

Enss, Volker, and Veselić, Krešimir. "Bound states and propagating states for time-dependent hamiltonians." Annales de l'I.H.P. Physique théorique 39.2 (1983): 159-191. <http://eudml.org/doc/76215>.

@article{Enss1983,
author = {Enss, Volker, Veselić, Krešimir},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {bound states and propagating states for quantum mechanical time-dependent Hamiltonians; time-periodic case},
language = {eng},
number = {2},
pages = {159-191},
publisher = {Gauthier-Villars},
title = {Bound states and propagating states for time-dependent hamiltonians},
url = {http://eudml.org/doc/76215},
volume = {39},
year = {1983},
}

TY - JOUR
AU - Enss, Volker
AU - Veselić, Krešimir
TI - Bound states and propagating states for time-dependent hamiltonians
JO - Annales de l'I.H.P. Physique théorique
PY - 1983
PB - Gauthier-Villars
VL - 39
IS - 2
SP - 159
EP - 191
LA - eng
KW - bound states and propagating states for quantum mechanical time-dependent Hamiltonians; time-periodic case
UR - http://eudml.org/doc/76215
ER -

References

top
  1. [1] W.O. Amrein, V. Georgescu, On the characterization of bound states and scattering states in Quantum Mechanics, Helv. Phys. Acta, t. 46, 1973, p. 635–657. MR363267
  2. [2] V. Enss, Geometric methods in spectral and scattering theory of Schrödinger operators, in Rigorous Atomic and Molecular Physics, G. Velo and A. S. Wightman eds., Plenum, New York, 1981. 
  3. [3] V. Enss, Propagation Properties of Quantum Scattering States, J. Func. Anal., t. 52, 1983, p. 219–251. Zbl0543.47009MR707205
  4. [4] F. Gesztesy, H. Mitter, A note on quasi periodic states, J. Phys. A, t. 14, 1981, L79–L85. MR609823
  5. [5] G.A. Hagedorn, An anolog of the Rage theorem for the impact parameter approximation to three particle scattering, Ann. Inst. H. Poincaré, t. 38, 1983, p. 59–68. Zbl0517.47009MR700700
  6. [6] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Clarendon, Oxford, 1979. Zbl0423.10001MR568909
  7. [7] J. Howland, Scattering states of Schrödinger operators periodic in time, preprint Univ. Virginia, 1979. 
  8. [8] J. Howland, Complex scaling of AC Stark Hamiltonians, J. Math. Phys., t. 24, 1983, p. 1240–1244. MR702107
  9. [9] D.B. Pearson, An example in potential scattering illustrating the breakdown of asymptotic completeness, Comm. Math. Phys., t. 40, 1975, p. 125–146. MR363285
  10. [10] M. Reed, B. Simon, Methods of modern Mathematical Physics, t. I-IV, Academic Press, New York, 1975–1979. 
  11. [11] D. Ruelle, A remark on bound states in potential scattering theory, Nuovo Cim., t. 59 A, 1969, p. 655-662. MR246603
  12. [12] W.R. Salzmann, Exact semiclassical solution for the time evolution of a quantum–mechanical system in a circularly polarized monochromatic driving field, Chem. Phys. Lett., t. 25, 1974, p. 302-304. 
  13. [13] V.I. Smirnov, Lehrgang der Höheren Mathematik, Dt. Verl. der Wissenschaften, Berlin, 1973. 
  14. [14] K. Veselić, On the characterisation of the bound and the scattering states for time dependent Hamiltonians, University of Dortmund preprint, 1979. 
  15. [15] K. Yajima, Resonances for the AC-Stark effect, Commun. Math. Phys., t. 87, 1982, p. 331-352. Zbl0538.47010MR682111
  16. [16] K. Yajima, H. Kitada, Bound States and scattering states for time periodic Hamiltonians, Ann. Inst. H. Poincaré, t. 39, 1983, p. 145-157. Zbl0544.35073MR722683
  17. [17] H. Kitada, Time decay of the high energy part of the solution for a Schrödinger equation, preprint Univ. Tokyo, 1982. Zbl0551.35070MR743522
  18. [18] Multiphoton bibliography, J. H. Eberly et al. eds., Univ. of Colorado & Rochester, yearly. 
  19. [19] G. Tomšič, Homogeneous operators, Studia Math., t. 51, 1974, p. 1-5. Zbl0276.47023MR358415

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.