Floquet operators with singular spectrum. I

James S. Howland

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 3, page 309-323
  • ISSN: 0246-0211

How to cite

top

Howland, James S.. "Floquet operators with singular spectrum. I." Annales de l'I.H.P. Physique théorique 50.3 (1989): 309-323. <http://eudml.org/doc/76449>.

@article{Howland1989,
author = {Howland, James S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {separable Hilbert space; Floquet operator; point spectrum},
language = {eng},
number = {3},
pages = {309-323},
publisher = {Gauthier-Villars},
title = {Floquet operators with singular spectrum. I},
url = {http://eudml.org/doc/76449},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Howland, James S.
TI - Floquet operators with singular spectrum. I
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 309
EP - 323
LA - eng
KW - separable Hilbert space; Floquet operator; point spectrum
UR - http://eudml.org/doc/76449
ER -

References

top
  1. [1] J. Bellissard, Stability and Instability in Quantum Mechanics in Trends and Developments in the Eighties, ALBEVARIO and BLANCHARD Eds., World Scientific, Singapore, 1985. Zbl0584.35024MR853743
  2. [2] J. Bellissard, Stability and Chaotic Behavior of Quantum Rotors in Stochastic Processes in Classical and Quantum Systems, S. ALBEVARIO, G. CASATI and D. MERLINI Eds., Lec. Notes in Phys., Vol. 262, 1986, pp. 24-38, Springer-Verlag, New York. MR870160
  3. [3] M. Combescure, The Quantum Stability Problem for Time-Periodic Perturbations of the Harmonic Oscillator, Ann. Inst. H. Poincaré, vol. 47, 1987, pp. 63-84; 451-4. Zbl0628.70017MR912757
  4. [4] T. Kato, Wave Operators and Similarity for Sone Non-Self-Adjoint Operators, Math. Ann., Vol. 162, 1966, pp. 258-279. Zbl0139.31203MR190801
  5. [5] T. Kato, Perturbation Theory for Linear Operators, 1st edition, Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
  6. [6] G. Hagadorn, M. Loss and J. Slawny, Non-Stochasticity of Time-Dependent Quadratic Hamiltonians and the Spectra of Transformations, J. Phys. A., Vol. 19, 1986, pp. 521-531. Zbl0601.70013MR833433
  7. [7] J.S. Howland, Scattering Theory for Hamiltonians Periodic in Time, Indiana J. Math., Vol. 28, 1979, pp. 471-494. Zbl0444.47010MR529679
  8. [8] J.S. Howland, Perturbation Theory of Dense Point Spectrum. J. Func. Anal., Vol. 74, 1987, pp. 52-80. Zbl0646.47011MR901230
  9. [9] J.S. Howland, Random Perturbation Theory and Quantum Chaos in Differential Equations and Mathematical Physics, pp. 197-204, I.W. Knowles and Y. SaitoEds., Lec. Notes in Math., Vol. 1285, Springer-Verlag, New York, 1987. Zbl0623.34060MR921269
  10. [10] J.S. Howland, A Localization Theorem for One-Dimensional Schroedinger Operators (to appear). 
  11. [11] M. Samuels, R. Fleckinger, L. Touzillier and J. Bellissard, The Rise of Chaotic Behavior in Quantum Systems and Spectral Transition, Europhys. Lett., Vol. 1, 1986, pp. 203-208. 
  12. [12] B. Simon and T. Wolff, Singular Continuous Spectrum Under Rank Are Perturbations and Localization for Random Hamiltonians, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 75-90. Zbl0609.47001MR820340
  13. [13] K. Yajima, Scattering Theory for Schroedinger Equation with Potential Periodic in Time, J. Math Soc. Japan, vol. 29, 1977, pp. 729-743. Zbl0356.47010MR470525
  14. [14] J. Avron, R. Seiler and L.G. Yaffe, Adiabatic Theorems and Applications to the Quantum Hall Effect, Comm. Math. Phys., Vol. 110, 1987, pp. 33-49. Zbl0626.58033MR885569

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.