Coherent states of the 1+1 dimensional Poincaré group : square integrability and a relativistic Weyl transform

S. Twareque Ali; J.-P. Antoine

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 51, Issue: 1, page 23-44
  • ISSN: 0246-0211

How to cite

top

Ali, S. Twareque, and Antoine, J.-P.. "Coherent states of the 1+1 dimensional Poincaré group : square integrability and a relativistic Weyl transform." Annales de l'I.H.P. Physique théorique 51.1 (1989): 23-44. <http://eudml.org/doc/76457>.

@article{Ali1989,
author = {Ali, S. Twareque, Antoine, J.-P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {square integrable representations; locally compact group; homogeneous spaces; coherent states; Wigner representation},
language = {eng},
number = {1},
pages = {23-44},
publisher = {Gauthier-Villars},
title = {Coherent states of the 1+1 dimensional Poincaré group : square integrability and a relativistic Weyl transform},
url = {http://eudml.org/doc/76457},
volume = {51},
year = {1989},
}

TY - JOUR
AU - Ali, S. Twareque
AU - Antoine, J.-P.
TI - Coherent states of the 1+1 dimensional Poincaré group : square integrability and a relativistic Weyl transform
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 51
IS - 1
SP - 23
EP - 44
LA - eng
KW - square integrable representations; locally compact group; homogeneous spaces; coherent states; Wigner representation
UR - http://eudml.org/doc/76457
ER -

References

top
  1. [1] J.R. Klauder and B.S. Skagerstam, Coherent States - Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985. Zbl1050.81558MR826247
  2. [2] A. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin, 1986. Zbl0605.22013MR899736
  3. [3] J. Dixmier, Les C*-algèbres et leurs représentations, 2e éd., Gauthier-Villars, Paris, 1969. Zbl0174.18601MR246136
  4. [4] S.A. Gaal, Linear Analysis and Representation Theory, Springer, Berlin, 1973. Zbl0275.43008MR447465
  5. [5] M. Duflo and C.C. Moore, J. Funct. Anal., Vol. 21, 1976, p. 209. Zbl0317.43013
  6. [6] A. Carey, Bull. Austral. Math. Soc., 15, 1976, p. 1; Rep. Math. Phys., Vol. 14, 1978, p. 247. Zbl0418.22004MR430146
  7. [7] A. Grossmann, J. Morlet and T. Paul, J. Math. Phys., Vol. 26, 1985, p. 2473; Ann. Inst. H. Poincaré, Vol. 45, 1986, p. 293. Zbl0571.22021
  8. [8] M. Flensted-Jensen, Ann. of Math., Vol. 111, 1980, p. 253. Zbl0462.22006MR569073
  9. [9] H. Schlichtkrull, Invent. Math., Vol. 68, 1982, p. 497. Zbl0501.22019MR669427
  10. [10] S.T. Ali, Rivista del Nuovo Cim., Vol. 8, # 11, 1985, p. 1. MR821194
  11. [11] E. Prugovecki, Stochastic Quantum Mechanics and Quantum Spacetime, D. Reidel, Dordrecht, 1984. Zbl0536.60100MR741681
  12. [12] S.T. Ali and H.D. Doebner, Quantization, topology and ordering, in Lect. Notes in Physics, Vol. 278, Springer, Berlin, 1987. MR915802
  13. [13] A. Grossmann, G. Loupias and E.M. Stein, Ann. Inst. Fourier, Grenoble, Vol. 18, 1968, p. 343. Zbl0176.45102MR267425
  14. [14] I. Daubechies and A. Grossmann, J. Math. Phys., Vol. 21, 1980, p. 2080. MR579204
  15. [15] I. Daubechies, A. Grossmann and J. Reignier, J. Math. Phys., Vol. 24, 1983, p. 239. MR692298
  16. [16] J.C.T. Pool, J. Math. Phys., Vol. 7, 1966, p. 66. Zbl0139.45903
  17. [17] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 1. Zbl0603.22010MR837718
  18. [18] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 19. Zbl0603.22011
  19. [19] S.T. Ali and E. Prugovecki, Acta Appl. Math., Vol. 6, 1986, p. 47. Zbl0603.22012
  20. [20] R. Kunze, Pacific J. Math., Vol. 53, 1974, p. 465. Zbl0321.22012MR374330
  21. [21] A. Borel, Représentations des Groupes Localement Compacts; Lect. Notes in Mathematics, Vol. 276, Springer, Berlin, 1972. Zbl0242.22007
  22. [22] H. Moscovici, Commun. Math. Phys., Vol. 54, 1977, p. 63. Zbl0407.22011MR442152
  23. [23] A.A. Kirillov, Elements of the Theory of Representations, Springer, Berlin, 1976. Zbl0342.22001MR412321
  24. [24] H. Moscovici and A. Verona, Ann. Inst. H. Poincaré, Vol. 29, 1978, p. 139. Zbl0392.22008MR513686
  25. [25] H. Scutaru, Lett. Math. Phys., 2, 1977, p. 101. Zbl0395.22009MR507248
  26. [26] A.M. Perelomov, Commun. Math. Phys., Vol. 26, 1972, p. 222 (reprinted in Ref. 1); ibid., Vol. 44, 1975, p. 197. Zbl0243.22016MR363209
  27. [27] I.M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4, Academic Press, New York, 1964. 
  28. [28] J.-P. Antoine, J. Math. Phys., Vol. 10, 1969, pp. 53, 2276. Zbl0172.56602
  29. [29] E. Nelson, Annals of Math., Vol. 70, 1959, p. 570. MR107176
  30. [30] P. Bona, Czech. J. Phys., Vol. B33, 1983, p. 837. 
  31. [31] S.T. Ali and S. De Bièvre, in XYIth International Colloquium on Group-Theoretical Methods in Physics (Proceedings, Varna, 1987); Lecture Notes in Physics, Vol. 313, p. 201; H.-D. DOEBNER, J.-D. HENNIG, T. D. PALEV Eds., Springer, Berlin, 1988. Zbl0675.22010
  32. [32] S. De Bièvre, J. Math. Phys., vol. 30, 1989, p. 1401. Toronto, 1988 (preprint). Zbl0686.46049MR1002242

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.