Semiclassical limit for perturbations of non-resonant rotators

Jan Herczyński

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 52, Issue: 4, page 377-395
  • ISSN: 0246-0211

How to cite

top

Herczyński, Jan. "Semiclassical limit for perturbations of non-resonant rotators." Annales de l'I.H.P. Physique théorique 52.4 (1990): 377-395. <http://eudml.org/doc/76489>.

@article{Herczyński1990,
author = {Herczyński, Jan},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {semiclassical limit; Rayleigh-Schrödinger series; Birkhoff series},
language = {eng},
number = {4},
pages = {377-395},
publisher = {Gauthier-Villars},
title = {Semiclassical limit for perturbations of non-resonant rotators},
url = {http://eudml.org/doc/76489},
volume = {52},
year = {1990},
}

TY - JOUR
AU - Herczyński, Jan
TI - Semiclassical limit for perturbations of non-resonant rotators
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 52
IS - 4
SP - 377
EP - 395
LA - eng
KW - semiclassical limit; Rayleigh-Schrödinger series; Birkhoff series
UR - http://eudml.org/doc/76489
ER -

References

top
  1. [1] G. Alvarez, S. Graffi and H. Silverstone, Transition from classical mechanics to quantum mechanics: x4 perturbed harmonic oscillator, Phys. Rev. A (to appear). 
  2. [2] G. Benettin, L. Galgani and A. Giorgilli, Classical perturbation theory for systems of weakly coupled rotators, Il Nuovo Cimento, 89 B, 1985, 89-102. MR818425
  3. [3] M. Born, Atomic Mechanics, Bell, London1960. 
  4. [4] L. Chierchia and G. Gallavotti, Smooth prime integrals for quasi-integrable Hamiltonian systems, Il Nuovo Cimento, 67B, 1982, 277-295. MR657905
  5. [5] G. Gallavotti, The elements of mechanics, Berlin, Heidelberg, New York: Springer, 1983. Zbl0512.70001MR698947
  6. [6] S. Graffi and T. Paul, The Schrödinger equation and canonical perturbation theory, Commun. Math. Phys, 108, 1987, 25-40. Zbl0622.35071MR872139
  7. [7] S. Graffi, T. Paul and H. Silverstone, Classical resonance overlapping and quantum avoided crossings, Phys. Rev. Lett., 59, 1987, 255-258. 
  8. [8] S. Graffi, T. Paul and H. Silverstone, Resonance overlapping in classical mechanics and avoided crossings in quantum mechanics, CPT preprint P. 2025, 1987. MR932922
  9. [9] L. Hörmander, The Analysis of linear partial differential operators, Berlin, Heidelberg, New York: Springer, 1983. Zbl0521.35002MR404822
  10. [10] V.V. Kozlov and D.V. Treščov, On integrability of Hamiltonian systems with toroidal configuration space, Mat. Sbornik, 135, 1988, 119-138 (in Russian). Zbl0696.58022
  11. [11] A. Messiah, Quantum mechanics, North-Holland, Amsterdam1961. Zbl0102.42602MR129790
  12. [12] M. Reed and B. Simon, Methods of modern mathematical physics, IV, New York: Academic Press, 1978. Zbl0401.47001MR751959
  13. [13] G. Turchetti, Classical limit and Stieltjes property of perturbation series for classical anharmonic oscillators, Il Nuovo Cimento, 82B, 1984, 203-217. MR770737
  14. [14] C.E. Wayne, Bounds on the trajectories of a system of weakly coupled rotators, Commun. Math. Phys., 104, 1986, 21-36. Zbl0615.70013MR834479
  15. [15] A. Voros, The return of the quartic oscillator, Ann. Inst. Henri Poincaré, 39, 1983, 211-338. Zbl0526.34046MR729194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.