Characteristic initial value problem for hyperbolic systems of second order differential equations

H. Müller zum Hagen

Annales de l'I.H.P. Physique théorique (1990)

  • Volume: 53, Issue: 2, page 159-216
  • ISSN: 0246-0211

How to cite

top

Müller zum Hagen, H.. "Characteristic initial value problem for hyperbolic systems of second order differential equations." Annales de l'I.H.P. Physique théorique 53.2 (1990): 159-216. <http://eudml.org/doc/76500>.

@article{MüllerzumHagen1990,
author = {Müller zum Hagen, H.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {energy inequality; quasilinear hyperbolic system of second order differential equations},
language = {eng},
number = {2},
pages = {159-216},
publisher = {Gauthier-Villars},
title = {Characteristic initial value problem for hyperbolic systems of second order differential equations},
url = {http://eudml.org/doc/76500},
volume = {53},
year = {1990},
}

TY - JOUR
AU - Müller zum Hagen, H.
TI - Characteristic initial value problem for hyperbolic systems of second order differential equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1990
PB - Gauthier-Villars
VL - 53
IS - 2
SP - 159
EP - 216
LA - eng
KW - energy inequality; quasilinear hyperbolic system of second order differential equations
UR - http://eudml.org/doc/76500
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces, Academic Press, N. Y. 1975. Zbl0314.46030MR450957
  2. [2] Choquet-Bruhat, CHRISTODOULOU and FRACOVILIA, Cauchy Data on a Manifold, Ann. Inst. Henri-Poincaré, 1978, Vol. XXIX. 
  3. [3] Müller Zum Hagen and Seifert, Charakteristic and Mixed Problems, G.R.G. J., 1977, Vol. 8, pp. 259-301. Zbl0417.35052MR606056
  4. [4] Christodoulou and Müller Zum Hagen, Extension de valeur initiale caractéristique pour des systèmes quasi linéaires de second ordre, C. R. Acad. Sci. Paris, 1981, T. 293, Series I, p. 39. Zbl0481.35059
  5. [5] R. Courant and D. Hilber, Methods of Mathematical Physics, Vol. II, 9th printing, Interscience Publ. N.Y., 1962. Zbl0099.29504MR65391
  6. [6] F.G. Friedlander, The Wave Equation of a Curved Space-Time, Cambridge University Press, 1975. Zbl0316.53021MR460898
  7. [7] G.F.D. Duff, Mixed Problems for Linear Systems of First Order, Can. J. Math., 1958, Vol. 10, pp. 127-160. Zbl0080.07703MR97603
  8. [8] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin, Heidelbeg, New York, 1972. Zbl0223.35039MR350177
  9. [9] I.P. Natanson, Theorie der Funktionen einer reellen Veränderlichen, Verlag Harri Deutsch, Zürich, Frankfurt/Main, Thun, 1977. Zbl0341.26003
  10. [10] W. Rudin, Functional Analysis, McGraw-Hill Book Company, N.Y., 1973. Zbl0253.46001MR365062
  11. [11] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, 1973. Zbl0265.53054MR424186
  12. [12] D. Christodoulou, Extension de la solution du problème de Cauchy d'équations quasi linéaires hyperboliques, C. R. Acad. Sci., Paris, 1980, T. 290, Series A, p. 641. Zbl0442.35023MR576026
  13. [13] D. Christodoulou, The Boost Problem for Weakly Coupled Quasilinear Hyperbolic System of the Second Order, preprint, Max-Planck-Institut für Physik und Astrophysik, MPI-PAE/Astro 218, 1980. MR616009
  14. [14] Müller Zum Hagen, Yodzis and Seifert, On the Occurrence of Naked Singularities, in Geneva/Relativity, Commun. Math. Phys., 1974, Vol. 37, pp. 29-40. MR345583
  15. [15] A.D. Rendall, Reduction of the Characteristic Initial Value Problem to the Cauchy Problem and its Application to Einstein Equations, Preprint, Max-Planck-Institut für Physik und Astrophysik, MPA 438, 1989. MR1032984
  16. [16] Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, Analysis, Manifold and Physics, North Holland, Amsterdam, 1977. Zbl0385.58001MR467779
  17. [17] G.F.R. Ellis, S.D. Nel, R. Maartens, W.R. Stoeger and A.P. Whitman, Phys. Rep., 1985, Vol. 124, pp. 315-417. MR797896
  18. [18] H. Friedrich, The Asymptotic Characteristic Initial Value Problem for Einstein's Vacuum Field Equations as an Initial Value Problem for First-Order Quasilinear Symmetric Hyperbolic System, Proc. R. Soc. Lond., 1981, Vol. A 378, pp. 401-421. Zbl0481.58026MR637872
  19. [19] H. Friedrich, On Purely Radiative Space-Times, Commun. Math. Phys., 1986, Vol. 103, pp. 35-65. Zbl0584.53038MR826857
  20. [20] J.M. Stewart, Classical General Relativity, W. B. BONNER, J. N. ISLAM, M. A. H. MAC CALLUM Eds., Cambridge University Press, 1984. MR779326
  21. [21] H. Friedrich and J. Stewart, Characteristic Initial Data and Wave Front Singularities in General Relativity, Proc. R. Soc. Lond., 1983, Vol. A 385, pp. 345-371. Zbl0513.58043MR692204
  22. [22] M. Dossa, Inegalités énergétiques sur un conoïde caractéristique. Annales de la Faculté des Sciences, Mathématiques-Physiques, 1985, T. 1, pp. 23-24. 
  23. [23] F. Cagnac, Problème de Cauchy un conoide caractèristique pour des équations quasi linéaires, Anali Mat. Pura Appl., 1980, Vol. CXXIX, pp. 13-41. Zbl0486.35023MR648323
  24. [24] G. Dautcourt, Zum charakteristischen Anfangswertproblem der Einsteinschen Feldgleichungen, Ann. Phys., 1963, Vol. 7, 12, pp. 302-323. Zbl0171.47301MR165949
  25. [25] H. Friedrich, On the Hyperbolicity of Einstein's and Other Gauge Field Equations, Commun. Math. Phy., 1985, Vol. 100, pp. 525-543; Proc. R. Soc. Lond., 1981, Vol. A 375, pp. 169-184. Zbl0588.35058MR806251
  26. [26] H. Friedrich, On the Regular and Assymptotic Characteristic Initial Value Problem for Einstein's Vacuum Field Equations, Proc. R. Soc. Lond., 1981, Vol. A 375, pp. 169- 184. Zbl0454.58017MR618984

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.