The Mourre estimate for regular dispersive systems

C. Gérard

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 1, page 59-88
  • ISSN: 0246-0211

How to cite

top

Gérard, C.. "The Mourre estimate for regular dispersive systems." Annales de l'I.H.P. Physique théorique 54.1 (1991): 59-88. <http://eudml.org/doc/76522>.

@article{Gérard1991,
author = {Gérard, C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {dispersive Hamiltonians; Mourre estimate; thresholds; absence of singular continuous spectrum; wave operators; asymptotic completeness},
language = {eng},
number = {1},
pages = {59-88},
publisher = {Gauthier-Villars},
title = {The Mourre estimate for regular dispersive systems},
url = {http://eudml.org/doc/76522},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Gérard, C.
TI - The Mourre estimate for regular dispersive systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 1
SP - 59
EP - 88
LA - eng
KW - dispersive Hamiltonians; Mourre estimate; thresholds; absence of singular continuous spectrum; wave operators; asymptotic completeness
UR - http://eudml.org/doc/76522
ER -

References

top
  1. [Ag] S. Agmon, Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Princeton University Press, Princeton, 1982. Zbl0503.35001MR745286
  2. [Bo] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations non linéaires, Ann. Scient. E.N.S., Vol. 14, 1981, p. 209-246. Zbl0495.35024MR631751
  3. [C] J.M. Combes, Time Dependent Approach to Nonrelativistic Multichannel Scattering, Nuevo Cimento, Vol. 64 A, 1969, p. 111-144. Zbl0181.27604
  4. [C.F.K.S.] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger operators, Texts and Monographs in Physics, Springer Verlag, 1987. Zbl0619.47005
  5. [Del] J. Derezinski, The Mourre Estimate for Dispersive N-Body Schrödinger Operators, Preprint Virginia Polytechnic Institute, 1988. MR970265
  6. [De2] J. Derezinski, Criteria for the Kato Smoothness with Respect to a Dispersive N-Body Schrödinger Operator, Preprint, Virginia Polytechnic Institute, 1988. MR1044891
  7. [E] V. Enss, Two Cluster Scattering of N Charged Particles, Comm. Math. Phys., Vol. 65, 1979, pp. 151-165. MR528188
  8. [F-H] R.G. Froese and I. Herbst, A New Proof of the Mourre Estimate, Duke Math. J., Vol. 49, 1982, pp. 1075-1085. Zbl0514.35025MR683011
  9. [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. III, Springer Verlag, 1985. Zbl0601.35001MR404822
  10. [R-S] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Analysis of operators, Academic Press, 1980. Zbl0401.47001MR751959
  11. [P-S-S] P. Perry, I.M. Sigal and B. Simon, Spectral Analysis of N-Body Schrödinger Operators, Ann. Math., Vol. 114, 1981, pp. 519-567. Zbl0477.35069MR634428
  12. [S] B. Simon, N-Body Scattering in the Two Cluster Region, Comm. Math. Phys., Vol. 58, 1978, pp. 205-210. MR496074
  13. [M] E. Mourre, Abscence of Singular Continuous Spectrum for Certain Self-Adjoint Operators, Comm. Math. Phys., Vol. 78, 1981, pp. 391-408. Zbl0489.47010MR603501
  14. [S-S] I.M. Sigal and A. Soffer, The N Particle Scattering Problem: Asymptotic Completeness for Short Range Systems, Ann. Math., Vol. 126, 1987, pp. 35-108. Zbl0646.47009MR898052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.