Norm group convergence for singular Schrödinger operators

Rhonda J. Hughes; Mark A. Kon

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 2, page 179-198
  • ISSN: 0246-0211

How to cite

top

Hughes, Rhonda J., and Kon, Mark A.. "Norm group convergence for singular Schrödinger operators." Annales de l'I.H.P. Physique théorique 54.2 (1991): 179-198. <http://eudml.org/doc/76527>.

@article{Hughes1991,
author = {Hughes, Rhonda J., Kon, Mark A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonian operators; Fourier transform; Schrödinger groups},
language = {eng},
number = {2},
pages = {179-198},
publisher = {Gauthier-Villars},
title = {Norm group convergence for singular Schrödinger operators},
url = {http://eudml.org/doc/76527},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Hughes, Rhonda J.
AU - Kon, Mark A.
TI - Norm group convergence for singular Schrödinger operators
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 2
SP - 179
EP - 198
LA - eng
KW - Hamiltonian operators; Fourier transform; Schrödinger groups
UR - http://eudml.org/doc/76527
ER -

References

top
  1. [1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New York, 1988. Zbl0679.46057MR926273
  2. [2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and W. Kirsch, On Point Interactions in One Dimension, J. Operator Theory, Vol. 12, 1984, pp. 101-126. Zbl0561.35023MR757115
  3. [3] W.G. Faris, Self-Adjoint Operators, Springer-Verlag, New York, 1975. Zbl0317.47016MR467348
  4. [4] C.N. Friedman, Perturbations of the Schrödinger Equation by Potentials with Small Support, J. Funct. Anal., Vol. 10, 1972, pp. 346-360. Zbl0235.35009MR340779
  5. [5] F. Gesztesy and H. Holden, A New Class of Solvable Models in Quantum Mechanics Describing Point Interactions on the Line, J. Phys., Vol. A 20, 1987, pp. 5157-5177. Zbl0627.34030MR914699
  6. [6] R. Hughes and I. Segal, Singular Perturbations in the Interaction Representation, J. Funct. Anal., Vol. 38, 1980, pp. 71-98. Zbl0454.47014MR583242
  7. [7] T. Kato, Perturbation Theory for Linear Operators, Second Edition, Springer-Verlag, New York, 1980. Zbl0435.47001MR407617
  8. [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I, Funct. Anal., Academic Press, New York, 1972. Zbl0242.46001MR493419
  9. [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II, Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975. Zbl0308.47002
  10. [10] I.E. Segal, Singular Perturbations of Semigroup Generators, Linear Operators and Approximation, Proceedings, Conference in Oberwolfach, 1971, pp. 54-68. Zbl0257.47026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.