Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems
N. G. Duffield; H. Roos; R. F. Werner
Annales de l'I.H.P. Physique théorique (1992)
- Volume: 56, Issue: 2, page 143-186
- ISSN: 0246-0211
Access Full Article
topHow to cite
topDuffield, N. G., Roos, H., and Werner, R. F.. "Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems." Annales de l'I.H.P. Physique théorique 56.2 (1992): 143-186. <http://eudml.org/doc/76564>.
@article{Duffield1992,
author = {Duffield, N. G., Roos, H., Werner, R. F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonian systems with inhomogeneous mean field interactions; mean field limit for nets of states converging to a macroscopic limit state; time evolution for the macroscopic limit states; equilibrium statistical mechanics},
language = {eng},
number = {2},
pages = {143-186},
publisher = {Gauthier-Villars},
title = {Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems},
url = {http://eudml.org/doc/76564},
volume = {56},
year = {1992},
}
TY - JOUR
AU - Duffield, N. G.
AU - Roos, H.
AU - Werner, R. F.
TI - Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 2
SP - 143
EP - 186
LA - eng
KW - Hamiltonian systems with inhomogeneous mean field interactions; mean field limit for nets of states converging to a macroscopic limit state; time evolution for the macroscopic limit states; equilibrium statistical mechanics
UR - http://eudml.org/doc/76564
ER -
References
top- [1] R. Alicki and J. Messer, Non-linear Quantum Dynamical Semigroups for Many-body Open Systems, J. Stat. Phys., Vol. 32, 1983, pp. 299-312. Zbl0584.35054MR715028
- [2] H. Araki, Relative Hamiltonian for Faithful Normal States of a von Neumann Algebra, Publ. Res. Inst. Math. Sci., Vol. 9, 1973, pp. 165-209. Zbl0273.46054MR342080
- [3] A. Blobel and J. Messer, Equilibrium States of Inhomogeneous Mean-field Quantum Spin Systems with Random Sites, J. Math. Phys., Vol. 26, 1985, pp. 1049-1056. Zbl0604.46079MR787354
- [4] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 2, New York, Heidelberg, Berlin: Springer, 1981. Zbl0463.46052MR611508
- [5] E. Buffet and Ph.A. Martin, Dynamics of the Open B.C.S. Model, J. Stat. Phys., Vol. 18, 1978, pp. 585-603. MR496267
- [6] N.G. Duffield and R. Kühn, The thermodynamics of Site-random Mean-field Quantum Spin Systems, J. Phys. A., Vol. 22, 1989, pp. 4643-4658. Zbl0707.60106MR1022138
- [7] N.G. Duffield and J.V. Pulè, A New Method for the Thermodynamics of the BCS Model, Commun. Math. Phys., Vol. 118, 1988, pp. 475-494. Zbl0658.60141MR958808
- [8] N.G. Duffield and R.F. Werner, Mean Field Dynamical Semigroups on C*- Algebras, DIAS-STP-90-13. Zbl0771.46035
- [9] E. Duffner and A. Rieckers, On the Global Quantum Dynamics of Multi-lattice Systems with Nonlinear Classical Effects, Z. Naturforschung, Vol. 43A, 1988, p. 521. MR954177
- [10] M. Fannes and H. Roos, Unpublished.
- [11] M. Fannes, H. Spohn and A. Verbeure, Equilibrium States for Mean Field Models, J. Math. Phys., Vol. 21, 1980, pp. 355-358. Zbl0445.46049MR558480
- [12] T. Gerisch and A. Rieckers, The Quantum Statistical free Energy Minimum Principle for Multi-lattice Mean Field Theories, Preprint, Tübingen, 1990. Zbl0808.46098MR1070356
- [13] K. Hepp and E.H. Lieb, Phase Transitions in Reservoir-driven Open Systems with Applications to Lasers and Superconductors, Helv. Phys. Acta., Vol. 46, 1973, pp. 573-603.
- [14] D. Kastler and D.W. Robinson, Invariant States in Statistical Mechanics, Commun. Math. Phys., Vol. 3, 1966, pp. 151-180. Zbl0177.41303MR205096
- [15] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. Zbl0169.17902MR248482
- [16] G.A. Raggio and R.F. Werner, Quantum Statistical Mechanics of General Meanfield Systems, Helv. Phys. Acta., Vol. 62, 1989, pp. 980-1003. Zbl0938.82501MR1034151
- [17] G.A. Raggio and R.F. Werner, The Gibbs Variational Principle for General BCS-type Models, Europhys. Lett., Vol. 9, 1989, pp. 633-637.
- [18] G.A. Raggio and R.F. Werner, The Gibbs Variational Principle for Inhomogeneous Mean-field Systems, Helv. Phys. Acta., Vol. 64, 1991, pp. 633-667. Zbl0938.82500MR1127778
- [19] H. Roos, KMS Condition in a Schrödinger Picture of the Dynamics, Physica, Vol. 100A, 1980, pp. 183-195. MR557149
- [20] D. Ruelle, Statistical Mechanics, London: Academic, 1969.
- [21] D. Ruelle, States of Physical Systems, Commun. Math. Phys., Vol. 3, 1966, pp. 133-150. Zbl0141.44604MR203510
- [22] H. Spohn, Kinetic Equations From Hamiltonian Dynamics: Markovian Limits, Rev. Mod. Phys., Vol. 53, 1980, pp. 569-615. MR578142
- [23] E. Størmer, Symmetric States of Infinite Tensor Products of C*-Algebras, J. Funct. Anal., Vol. 3, 1969, pp. 48-68. Zbl0167.43403MR241992
- [24] M. Takesaki, Theory of Operator Algebras I, New York, Heidelberg, Berlin: Springer, 1979. Zbl0436.46043MR548728
- [25] T. Unnerstall and A. Rieckers, Quasispin-Operator Description of the Josephson Tunnel Junction and the Josephson Plasma Frequency, Phys. Rev., Vol. 39, 1989, pp. 2173-2179.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.