Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems

N. G. Duffield; H. Roos; R. F. Werner

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 56, Issue: 2, page 143-186
  • ISSN: 0246-0211

How to cite

top

Duffield, N. G., Roos, H., and Werner, R. F.. "Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems." Annales de l'I.H.P. Physique théorique 56.2 (1992): 143-186. <http://eudml.org/doc/76564>.

@article{Duffield1992,
author = {Duffield, N. G., Roos, H., Werner, R. F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonian systems with inhomogeneous mean field interactions; mean field limit for nets of states converging to a macroscopic limit state; time evolution for the macroscopic limit states; equilibrium statistical mechanics},
language = {eng},
number = {2},
pages = {143-186},
publisher = {Gauthier-Villars},
title = {Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems},
url = {http://eudml.org/doc/76564},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Duffield, N. G.
AU - Roos, H.
AU - Werner, R. F.
TI - Macroscopic limiting dynamics of a class of inhomogeneous mean field quantum systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 2
SP - 143
EP - 186
LA - eng
KW - Hamiltonian systems with inhomogeneous mean field interactions; mean field limit for nets of states converging to a macroscopic limit state; time evolution for the macroscopic limit states; equilibrium statistical mechanics
UR - http://eudml.org/doc/76564
ER -

References

top
  1. [1] R. Alicki and J. Messer, Non-linear Quantum Dynamical Semigroups for Many-body Open Systems, J. Stat. Phys., Vol. 32, 1983, pp. 299-312. Zbl0584.35054MR715028
  2. [2] H. Araki, Relative Hamiltonian for Faithful Normal States of a von Neumann Algebra, Publ. Res. Inst. Math. Sci., Vol. 9, 1973, pp. 165-209. Zbl0273.46054MR342080
  3. [3] A. Blobel and J. Messer, Equilibrium States of Inhomogeneous Mean-field Quantum Spin Systems with Random Sites, J. Math. Phys., Vol. 26, 1985, pp. 1049-1056. Zbl0604.46079MR787354
  4. [4] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 2, New York, Heidelberg, Berlin: Springer, 1981. Zbl0463.46052MR611508
  5. [5] E. Buffet and Ph.A. Martin, Dynamics of the Open B.C.S. Model, J. Stat. Phys., Vol. 18, 1978, pp. 585-603. MR496267
  6. [6] N.G. Duffield and R. Kühn, The thermodynamics of Site-random Mean-field Quantum Spin Systems, J. Phys. A., Vol. 22, 1989, pp. 4643-4658. Zbl0707.60106MR1022138
  7. [7] N.G. Duffield and J.V. Pulè, A New Method for the Thermodynamics of the BCS Model, Commun. Math. Phys., Vol. 118, 1988, pp. 475-494. Zbl0658.60141MR958808
  8. [8] N.G. Duffield and R.F. Werner, Mean Field Dynamical Semigroups on C*- Algebras, DIAS-STP-90-13. Zbl0771.46035
  9. [9] E. Duffner and A. Rieckers, On the Global Quantum Dynamics of Multi-lattice Systems with Nonlinear Classical Effects, Z. Naturforschung, Vol. 43A, 1988, p. 521. MR954177
  10. [10] M. Fannes and H. Roos, Unpublished. 
  11. [11] M. Fannes, H. Spohn and A. Verbeure, Equilibrium States for Mean Field Models, J. Math. Phys., Vol. 21, 1980, pp. 355-358. Zbl0445.46049MR558480
  12. [12] T. Gerisch and A. Rieckers, The Quantum Statistical free Energy Minimum Principle for Multi-lattice Mean Field Theories, Preprint, Tübingen, 1990. Zbl0808.46098MR1070356
  13. [13] K. Hepp and E.H. Lieb, Phase Transitions in Reservoir-driven Open Systems with Applications to Lasers and Superconductors, Helv. Phys. Acta., Vol. 46, 1973, pp. 573-603. 
  14. [14] D. Kastler and D.W. Robinson, Invariant States in Statistical Mechanics, Commun. Math. Phys., Vol. 3, 1966, pp. 151-180. Zbl0177.41303MR205096
  15. [15] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. Zbl0169.17902MR248482
  16. [16] G.A. Raggio and R.F. Werner, Quantum Statistical Mechanics of General Meanfield Systems, Helv. Phys. Acta., Vol. 62, 1989, pp. 980-1003. Zbl0938.82501MR1034151
  17. [17] G.A. Raggio and R.F. Werner, The Gibbs Variational Principle for General BCS-type Models, Europhys. Lett., Vol. 9, 1989, pp. 633-637. 
  18. [18] G.A. Raggio and R.F. Werner, The Gibbs Variational Principle for Inhomogeneous Mean-field Systems, Helv. Phys. Acta., Vol. 64, 1991, pp. 633-667. Zbl0938.82500MR1127778
  19. [19] H. Roos, KMS Condition in a Schrödinger Picture of the Dynamics, Physica, Vol. 100A, 1980, pp. 183-195. MR557149
  20. [20] D. Ruelle, Statistical Mechanics, London: Academic, 1969. 
  21. [21] D. Ruelle, States of Physical Systems, Commun. Math. Phys., Vol. 3, 1966, pp. 133-150. Zbl0141.44604MR203510
  22. [22] H. Spohn, Kinetic Equations From Hamiltonian Dynamics: Markovian Limits, Rev. Mod. Phys., Vol. 53, 1980, pp. 569-615. MR578142
  23. [23] E. Størmer, Symmetric States of Infinite Tensor Products of C*-Algebras, J. Funct. Anal., Vol. 3, 1969, pp. 48-68. Zbl0167.43403MR241992
  24. [24] M. Takesaki, Theory of Operator Algebras I, New York, Heidelberg, Berlin: Springer, 1979. Zbl0436.46043MR548728
  25. [25] T. Unnerstall and A. Rieckers, Quasispin-Operator Description of the Josephson Tunnel Junction and the Josephson Plasma Frequency, Phys. Rev., Vol. 39, 1989, pp. 2173-2179. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.