Absence of geometrical phases in the rotating stark effect
Emanuela Caliceti; Stefano Marmi; Franco Nardini
Annales de l'I.H.P. Physique théorique (1992)
- Volume: 56, Issue: 3, page 279-305
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCaliceti, Emanuela, Marmi, Stefano, and Nardini, Franco. "Absence of geometrical phases in the rotating stark effect." Annales de l'I.H.P. Physique théorique 56.3 (1992): 279-305. <http://eudml.org/doc/76568>.
@article{Caliceti1992,
author = {Caliceti, Emanuela, Marmi, Stefano, Nardini, Franco},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operators; one electron atom; varying electric field},
language = {eng},
number = {3},
pages = {279-305},
publisher = {Gauthier-Villars},
title = {Absence of geometrical phases in the rotating stark effect},
url = {http://eudml.org/doc/76568},
volume = {56},
year = {1992},
}
TY - JOUR
AU - Caliceti, Emanuela
AU - Marmi, Stefano
AU - Nardini, Franco
TI - Absence of geometrical phases in the rotating stark effect
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 3
SP - 279
EP - 305
LA - eng
KW - Schrödinger operators; one electron atom; varying electric field
UR - http://eudml.org/doc/76568
ER -
References
top- J. Aguilar and J.M. Combes, A Class of Analytic Perturbation for one Body Schrödinger Hamiltonians, Commun. Math. Phys., Vol. 22, 1971, pp. 269-279. Zbl0219.47011MR345551
- Y. Aharonov and J. Anandan, Phase Change During a Cyclic Quantum Evolution, Phys. Rev. Lett., Vol. 58, 1987, pp. 1593-1596. MR884314
- V.I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1983. MR695786
- V.I. Arnol'd, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, Vol. 3, Dynamical Systems, IIISpringer-Verlag, Berlin, 1988. MR1292465
- G. Auberson and G. Mennessier, Some Properties of Borel Summable Functions, J. Math. Phys., Vol. 22, 1981, pp. 2472-2481. Zbl0471.40005MR640653
- J. Ash, On the Classical Limit of Berry's Phase Integrable Systems, Commun. Math. Phys., Vol. 127, 1990, pp. 637-651. Zbl0698.58026MR1040900
- J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic Theorems and Applications to the Quantum Hall Effect, Commun. Math. Phys., Vol. 110, 1987, pp. 33-49. Zbl0626.58033MR885569
- J.E. Avron, L. Sadun and B. Simon, Chern Numbers, Quaternions and Berry's Phases in Fermi Systems, Commun. Math. Phys., Vol. 124, 1989, pp. 595-627. Zbl0830.57020MR1014116
- E. Balslev and J.M. Combes, Special Properties of Many Body Schrödinger Operators with Dilation Analytic Interactions, Commun. Math. Phys., Vol. 22, 1971, pp. 280-294. Zbl0219.47005MR345552
- V. Béletski, Essais sur le mouvement des corps cosmiquesMir, Moscow, 1977.
- M.V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. London, Vol. A392, 1984, pp. 45-57. Zbl1113.81306MR738926
- M.V. Berry, Classical Adiabatic Angles and Quantal Adiabatic Phase, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 15-27. Zbl0569.70020MR777620
- M.V. Berry, The Quantum Phase, Five Years After, Geometric Phases in Physics, A. Shapere and F. Wilczek eds., World Scientific, Singapore, 1989, pp. 7-28. MR1084386
- G. Gérard and D. Robert, On the Semiclassical Asymptotics of Berry's Phase, Preprint, École Polytechnique, Paris, 1989.
- S. Golin, A. Knauf and S. Marmi, The Hannay Angles: Geometry, Adiabaticity and an Example, Commun. Math. Phys., Vol. 123, 1989, pp. 95-122. Zbl0825.58012MR1002034
- S. Golin and S. Marmi, Symmetries, Hannay Angles and Precession of Orbits, Europhys. Lett., Vol. 8, 1989, pp. 399-404.
- S. Golin and S. Marmi, A Class of Systems with Measurable Hannay Angles, Nonlinearity, Vol. 3, 1990, pp. 507-518. Zbl0713.70017MR1054585
- L.S. Gradshteyn and I.M. Rykhik, Table of integrals, Series and Products Academic Press, London, 1980.
- S. Graffi and V. Grecchi, Resonances in the Stark Effect and Perturbation Theory, Commun. Math. Phys., Vol. 62, 1978, pp. 83-96. MR506369
- S. Graffi, V. Grecchi and E.M. Harrel II and H.J. Silverstone, The 1/R Expansion for H2+: Analiticity, Summability and Asymptotics, Ann. Phys., Vol. 165, 1985, pp. 441- 483. Zbl0614.46068MR816800
- J.H. Hannay, Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 221-230. MR784910
- I.W. Herbst, Dilation Analyticity in Constant Electric Field I. The Two Body Problem, Commun. Math. Phys., Vol. 64, 1979, pp. 279-298. Zbl0447.47028MR520094
- I.W. Herbst, Schrödinger Operators with External Homogeneous Electric and Magnetic Fields, NATO Advanced Studies Institute, Vol. 32B, A. Velo and A. Wightman eds.. 1982.
- W. Hunziker, Schrödinger Operatrs with Electric or Magnetic Fields, in Mathematical Problems in Theoretical Physics, Lect. Notes Phys., Vol. 116, K. Osterwalder ed., Springer-Verlag, Berlin, 1979, pp. 25-44. Zbl0471.47010MR582602
- W. Hunziker and C.A. Pillet, Degenerate Asymptotic Perturbation Theory, Commun. Math. Phys., Vol. 90, 1983, pp. 219-233. Zbl0522.47011MR714435
- W. Hunziker and E. Vock, Stability of Schrödinger Eigenvalue Problems, Commun. Math. Phys., Vol. 83, 1982, pp. 281-302. Zbl0528.35023MR649163
- R. Jackiw, Berry's Phase - Topological Ideas from Atomic, Molecular and Optical Physics, Commun. Atom. Mol. Phys., Vol. 21, 1988, pp. 71-82.
- T. Kato, On the Adiabatic Theorem in Quantum Mechanics, J. Phys. Soc. Japan, Vol. 5, 1950, pp. 435-439.
- Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966, L. Landau and E. Lifchitz, Mécanique QuantiqueMir, Moscow, 1966. Zbl0148.12601MR203473
- P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems, Springer-Verlag, Berlin, 1988,. Zbl0668.34044MR959890
- J.E. Marsden, R. Montgomery and T. Ratiu, Cartan-Hannay-Berry Phases and Symmetry, Contemp. Math. A.M.S., Vol. 97, 1989, pp. 179-196. Zbl0694.70008MR1021042
- R. Montgomery, The Connection Whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and its Generalization to the Non-integrable Case, Commun. Math. Phys., Vol. 120, 1988, pp. 269-294. Zbl0689.58043MR973536
- J.P. Ramis, Dévissage Gevrey, Astérisque, Vol. 59-60, 1978, pp. 173-204. Zbl0409.34018MR542737
- J.P. Ramis, Les séries k-sommables et leurs applications, Springer, Lect. Notes Phys., Vol. 126, 1980, pp. 178-199. Zbl1251.32008MR579749
- M. Reed and B. Simons, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
- A. SHAPERE and E. WILCZEK eds., Geometric Phases in Physics, World Scientific, Singapore, 1989. Zbl0914.00014MR1084385
- B. Simon, Holonomy, the Quantum Adiabatic Theorem and Berry's Phase, Phys. Rev. Lett., Vol. 51, 1983, pp. 2167-2170. MR726866
- W. Thirring, A course in Mathematical Physics 1. Classical Dynamical Systems, Springer-Verlag, New York, Wien, 1978. Zbl0387.70001MR587314
- W. Thirring, A course in Mathematical Physics 3. Quantum Mechanics of Atoms and Molecules, Springer-Verlag, New York, Wien, 1981. Zbl0462.46046MR625662
- A. Weinstein, Connections of Berry and Hannay Type for Moving Lagrangian Manifolds, Adv. Math., Vol. 82, 1990, pp. 133-159. Zbl0713.58015MR1063955
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.