Absence of geometrical phases in the rotating stark effect

Emanuela Caliceti; Stefano Marmi; Franco Nardini

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 56, Issue: 3, page 279-305
  • ISSN: 0246-0211

How to cite

top

Caliceti, Emanuela, Marmi, Stefano, and Nardini, Franco. "Absence of geometrical phases in the rotating stark effect." Annales de l'I.H.P. Physique théorique 56.3 (1992): 279-305. <http://eudml.org/doc/76568>.

@article{Caliceti1992,
author = {Caliceti, Emanuela, Marmi, Stefano, Nardini, Franco},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger operators; one electron atom; varying electric field},
language = {eng},
number = {3},
pages = {279-305},
publisher = {Gauthier-Villars},
title = {Absence of geometrical phases in the rotating stark effect},
url = {http://eudml.org/doc/76568},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Caliceti, Emanuela
AU - Marmi, Stefano
AU - Nardini, Franco
TI - Absence of geometrical phases in the rotating stark effect
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 3
SP - 279
EP - 305
LA - eng
KW - Schrödinger operators; one electron atom; varying electric field
UR - http://eudml.org/doc/76568
ER -

References

top
  1. J. Aguilar and J.M. Combes, A Class of Analytic Perturbation for one Body Schrödinger Hamiltonians, Commun. Math. Phys., Vol. 22, 1971, pp. 269-279. Zbl0219.47011MR345551
  2. Y. Aharonov and J. Anandan, Phase Change During a Cyclic Quantum Evolution, Phys. Rev. Lett., Vol. 58, 1987, pp. 1593-1596. MR884314
  3. V.I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1983. MR695786
  4. V.I. Arnol'd, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, Vol. 3, Dynamical Systems, IIISpringer-Verlag, Berlin, 1988. MR1292465
  5. G. Auberson and G. Mennessier, Some Properties of Borel Summable Functions, J. Math. Phys., Vol. 22, 1981, pp. 2472-2481. Zbl0471.40005MR640653
  6. J. Ash, On the Classical Limit of Berry's Phase Integrable Systems, Commun. Math. Phys., Vol. 127, 1990, pp. 637-651. Zbl0698.58026MR1040900
  7. J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic Theorems and Applications to the Quantum Hall Effect, Commun. Math. Phys., Vol. 110, 1987, pp. 33-49. Zbl0626.58033MR885569
  8. J.E. Avron, L. Sadun and B. Simon, Chern Numbers, Quaternions and Berry's Phases in Fermi Systems, Commun. Math. Phys., Vol. 124, 1989, pp. 595-627. Zbl0830.57020MR1014116
  9. E. Balslev and J.M. Combes, Special Properties of Many Body Schrödinger Operators with Dilation Analytic Interactions, Commun. Math. Phys., Vol. 22, 1971, pp. 280-294. Zbl0219.47005MR345552
  10. V. Béletski, Essais sur le mouvement des corps cosmiquesMir, Moscow, 1977. 
  11. M.V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. London, Vol. A392, 1984, pp. 45-57. Zbl1113.81306MR738926
  12. M.V. Berry, Classical Adiabatic Angles and Quantal Adiabatic Phase, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 15-27. Zbl0569.70020MR777620
  13. M.V. Berry, The Quantum Phase, Five Years After, Geometric Phases in Physics, A. Shapere and F. Wilczek eds., World Scientific, Singapore, 1989, pp. 7-28. MR1084386
  14. G. Gérard and D. Robert, On the Semiclassical Asymptotics of Berry's Phase, Preprint, École Polytechnique, Paris, 1989. 
  15. S. Golin, A. Knauf and S. Marmi, The Hannay Angles: Geometry, Adiabaticity and an Example, Commun. Math. Phys., Vol. 123, 1989, pp. 95-122. Zbl0825.58012MR1002034
  16. S. Golin and S. Marmi, Symmetries, Hannay Angles and Precession of Orbits, Europhys. Lett., Vol. 8, 1989, pp. 399-404. 
  17. S. Golin and S. Marmi, A Class of Systems with Measurable Hannay Angles, Nonlinearity, Vol. 3, 1990, pp. 507-518. Zbl0713.70017MR1054585
  18. L.S. Gradshteyn and I.M. Rykhik, Table of integrals, Series and Products Academic Press, London, 1980. 
  19. S. Graffi and V. Grecchi, Resonances in the Stark Effect and Perturbation Theory, Commun. Math. Phys., Vol. 62, 1978, pp. 83-96. MR506369
  20. S. Graffi, V. Grecchi and E.M. Harrel II and H.J. Silverstone, The 1/R Expansion for H2+: Analiticity, Summability and Asymptotics, Ann. Phys., Vol. 165, 1985, pp. 441- 483. Zbl0614.46068MR816800
  21. J.H. Hannay, Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 221-230. MR784910
  22. I.W. Herbst, Dilation Analyticity in Constant Electric Field I. The Two Body Problem, Commun. Math. Phys., Vol. 64, 1979, pp. 279-298. Zbl0447.47028MR520094
  23. I.W. Herbst, Schrödinger Operators with External Homogeneous Electric and Magnetic Fields, NATO Advanced Studies Institute, Vol. 32B, A. Velo and A. Wightman eds.. 1982. 
  24. W. Hunziker, Schrödinger Operatrs with Electric or Magnetic Fields, in Mathematical Problems in Theoretical Physics, Lect. Notes Phys., Vol. 116, K. Osterwalder ed., Springer-Verlag, Berlin, 1979, pp. 25-44. Zbl0471.47010MR582602
  25. W. Hunziker and C.A. Pillet, Degenerate Asymptotic Perturbation Theory, Commun. Math. Phys., Vol. 90, 1983, pp. 219-233. Zbl0522.47011MR714435
  26. W. Hunziker and E. Vock, Stability of Schrödinger Eigenvalue Problems, Commun. Math. Phys., Vol. 83, 1982, pp. 281-302. Zbl0528.35023MR649163
  27. R. Jackiw, Berry's Phase - Topological Ideas from Atomic, Molecular and Optical Physics, Commun. Atom. Mol. Phys., Vol. 21, 1988, pp. 71-82. 
  28. T. Kato, On the Adiabatic Theorem in Quantum Mechanics, J. Phys. Soc. Japan, Vol. 5, 1950, pp. 435-439. 
  29. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966, L. Landau and E. Lifchitz, Mécanique QuantiqueMir, Moscow, 1966. Zbl0148.12601MR203473
  30. P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems, Springer-Verlag, Berlin, 1988,. Zbl0668.34044MR959890
  31. J.E. Marsden, R. Montgomery and T. Ratiu, Cartan-Hannay-Berry Phases and Symmetry, Contemp. Math. A.M.S., Vol. 97, 1989, pp. 179-196. Zbl0694.70008MR1021042
  32. R. Montgomery, The Connection Whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and its Generalization to the Non-integrable Case, Commun. Math. Phys., Vol. 120, 1988, pp. 269-294. Zbl0689.58043MR973536
  33. J.P. Ramis, Dévissage Gevrey, Astérisque, Vol. 59-60, 1978, pp. 173-204. Zbl0409.34018MR542737
  34. J.P. Ramis, Les séries k-sommables et leurs applications, Springer, Lect. Notes Phys., Vol. 126, 1980, pp. 178-199. Zbl1251.32008MR579749
  35. M. Reed and B. Simons, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  36. A. SHAPERE and E. WILCZEK eds., Geometric Phases in Physics, World Scientific, Singapore, 1989. Zbl0914.00014MR1084385
  37. B. Simon, Holonomy, the Quantum Adiabatic Theorem and Berry's Phase, Phys. Rev. Lett., Vol. 51, 1983, pp. 2167-2170. MR726866
  38. W. Thirring, A course in Mathematical Physics 1. Classical Dynamical Systems, Springer-Verlag, New York, Wien, 1978. Zbl0387.70001MR587314
  39. W. Thirring, A course in Mathematical Physics 3. Quantum Mechanics of Atoms and Molecules, Springer-Verlag, New York, Wien, 1981. Zbl0462.46046MR625662
  40. A. Weinstein, Connections of Berry and Hannay Type for Moving Lagrangian Manifolds, Adv. Math., Vol. 82, 1990, pp. 133-159. Zbl0713.58015MR1063955

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.