Logarithmic measures, subdimension and Lyapunov exponents of Cantori
R. Coutinho; R. Lima; R. Vilela Mendes; S. Vaïenti
Annales de l'I.H.P. Physique théorique (1992)
- Volume: 56, Issue: 4, page 415-427
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCoutinho, R., et al. "Logarithmic measures, subdimension and Lyapunov exponents of Cantori." Annales de l'I.H.P. Physique théorique 56.4 (1992): 415-427. <http://eudml.org/doc/76573>.
@article{Coutinho1992,
author = {Coutinho, R., Lima, R., Vilela Mendes, R., Vaïenti, S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {invariant sets; dynamical systems; fractal dimension; Cantor set; Hausdorff dimension; Cantorus},
language = {eng},
number = {4},
pages = {415-427},
publisher = {Gauthier-Villars},
title = {Logarithmic measures, subdimension and Lyapunov exponents of Cantori},
url = {http://eudml.org/doc/76573},
volume = {56},
year = {1992},
}
TY - JOUR
AU - Coutinho, R.
AU - Lima, R.
AU - Vilela Mendes, R.
AU - Vaïenti, S.
TI - Logarithmic measures, subdimension and Lyapunov exponents of Cantori
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 4
SP - 415
EP - 427
LA - eng
KW - invariant sets; dynamical systems; fractal dimension; Cantor set; Hausdorff dimension; Cantorus
UR - http://eudml.org/doc/76573
ER -
References
top- [1] W. Li and P. Bak, Phys. Rev. Lett., Vol. 57, 1986, p. 655. MR851168
- [2] R.S. Mackay, J. Phys. A: Math. Gen., Vol. 20, 1987, p. L559. Zbl0623.58031
- [3] D.L. Goroff, Ergod. Th. Dyn. Syst., Vol. 5, 1985, p. 337. Zbl0551.58028
- [4] C.A. Rogers, Hausdorff Measures, Cambridge Univ. Press, 1970. Zbl0204.37601MR281862
- [5] See Ref. [4] p. 79.
- [6] I.C. Percival and F. Vivaldi, Physica, Vol. D27, 1987, p. 373; N. Bird and F. Vivaldi, Physica, D30, 1988, p. 164; Q. Chen, I. Dana, J.D. Meiss, N.W. Murray and I.C. Percival, Physica, Vol. D46, 1990, p. 217.
- [7] H.J. Schellnhuber and H. Urbschat, Phys. Rev., Vol. A38, 1988, p. 5888. MR972642
- [8] R.S. Mackay and J. Stark, Lectures on Orbits of Minimal Action for Area Preserving Maps, WarwickUniv. report, 1985.
- [9] M. Shub, Global stability of Dynamical Systems, Springer, Berlin, 1987. Zbl0606.58003MR869255
- [10] A. Fathi, Comm. Math. Phys., 126, 1989, p. 249. Zbl0819.58026MR1027497
- [11] J. Bellissard and S. Vaienti, Rigorous Diffusion Properties for the Sawtooth Map, Comm. Math. Phys.1992, to appear. Zbl0756.58029MR1158759
- [12] S. Vaienti, Ergodic Properties of the Discontinuous Sawtooth Map, Journal of Stat. Phys., Vol. 67, 1992, p. 251. Zbl0892.58049MR1159464
- [13] J.P. Cornfeld, S.V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982. Zbl0493.28007MR832433
- [14] D. Ruelle, Publ. Math. I.H.E.S., Vol. 50, 1979, p. 275. Zbl0426.58014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.