Logarithmic measures, subdimension and Lyapunov exponents of Cantori

R. Coutinho; R. Lima; R. Vilela Mendes; S. Vaïenti

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 56, Issue: 4, page 415-427
  • ISSN: 0246-0211

How to cite

top

Coutinho, R., et al. "Logarithmic measures, subdimension and Lyapunov exponents of Cantori." Annales de l'I.H.P. Physique théorique 56.4 (1992): 415-427. <http://eudml.org/doc/76573>.

@article{Coutinho1992,
author = {Coutinho, R., Lima, R., Vilela Mendes, R., Vaïenti, S.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {invariant sets; dynamical systems; fractal dimension; Cantor set; Hausdorff dimension; Cantorus},
language = {eng},
number = {4},
pages = {415-427},
publisher = {Gauthier-Villars},
title = {Logarithmic measures, subdimension and Lyapunov exponents of Cantori},
url = {http://eudml.org/doc/76573},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Coutinho, R.
AU - Lima, R.
AU - Vilela Mendes, R.
AU - Vaïenti, S.
TI - Logarithmic measures, subdimension and Lyapunov exponents of Cantori
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 56
IS - 4
SP - 415
EP - 427
LA - eng
KW - invariant sets; dynamical systems; fractal dimension; Cantor set; Hausdorff dimension; Cantorus
UR - http://eudml.org/doc/76573
ER -

References

top
  1. [1] W. Li and P. Bak, Phys. Rev. Lett., Vol. 57, 1986, p. 655. MR851168
  2. [2] R.S. Mackay, J. Phys. A: Math. Gen., Vol. 20, 1987, p. L559. Zbl0623.58031
  3. [3] D.L. Goroff, Ergod. Th. Dyn. Syst., Vol. 5, 1985, p. 337. Zbl0551.58028
  4. [4] C.A. Rogers, Hausdorff Measures, Cambridge Univ. Press, 1970. Zbl0204.37601MR281862
  5. [5] See Ref. [4] p. 79. 
  6. [6] I.C. Percival and F. Vivaldi, Physica, Vol. D27, 1987, p. 373; N. Bird and F. Vivaldi, Physica, D30, 1988, p. 164; Q. Chen, I. Dana, J.D. Meiss, N.W. Murray and I.C. Percival, Physica, Vol. D46, 1990, p. 217. 
  7. [7] H.J. Schellnhuber and H. Urbschat, Phys. Rev., Vol. A38, 1988, p. 5888. MR972642
  8. [8] R.S. Mackay and J. Stark, Lectures on Orbits of Minimal Action for Area Preserving Maps, WarwickUniv. report, 1985. 
  9. [9] M. Shub, Global stability of Dynamical Systems, Springer, Berlin, 1987. Zbl0606.58003MR869255
  10. [10] A. Fathi, Comm. Math. Phys., 126, 1989, p. 249. Zbl0819.58026MR1027497
  11. [11] J. Bellissard and S. Vaienti, Rigorous Diffusion Properties for the Sawtooth Map, Comm. Math. Phys.1992, to appear. Zbl0756.58029MR1158759
  12. [12] S. Vaienti, Ergodic Properties of the Discontinuous Sawtooth Map, Journal of Stat. Phys., Vol. 67, 1992, p. 251. Zbl0892.58049MR1159464
  13. [13] J.P. Cornfeld, S.V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982. Zbl0493.28007MR832433
  14. [14] D. Ruelle, Publ. Math. I.H.E.S., Vol. 50, 1979, p. 275. Zbl0426.58014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.