A convergent post-newtonian approximation for the constraint equations in general relativity

M. Lottermoser

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 57, Issue: 3, page 279-317
  • ISSN: 0246-0211

How to cite


Lottermoser, M.. "A convergent post-newtonian approximation for the constraint equations in general relativity." Annales de l'I.H.P. Physique théorique 57.3 (1992): 279-317. <http://eudml.org/doc/76588>.

author = {Lottermoser, M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {space-like initial vlue problem; iteration method; Taylor expansions},
language = {eng},
number = {3},
pages = {279-317},
publisher = {Gauthier-Villars},
title = {A convergent post-newtonian approximation for the constraint equations in general relativity},
url = {http://eudml.org/doc/76588},
volume = {57},
year = {1992},

AU - Lottermoser, M.
TI - A convergent post-newtonian approximation for the constraint equations in general relativity
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 3
SP - 279
EP - 317
LA - eng
KW - space-like initial vlue problem; iteration method; Taylor expansions
UR - http://eudml.org/doc/76588
ER -


  1. [1] S. Chandrasekhar, The post-Newtonian equations of hydrodynamics in general relativity, Ap. J., Vol. 142, 1965, pp. 1488-1512. MR191609
  2. [2] A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations and the problem of motion, Ann. Math., Vol. 39, 1938, pp. 65-100. Zbl0018.28103MR1503389JFM64.0769.01
  3. [3] J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie, In J. NITSCH, J. PFARR and E.-W. STACHOW Eds., Grundlagenprobleme der modernen Physik, Mannheim, Wien, Zürich: Bibliographisches Institut, 1981, pp. 65-84. MR653491
  4. [4] J. Ehlers, On Limit Relations Between, And Approximative Explanations Of, Physical Theories, In R. BARCAN MARCUS, G. J. W. DORN and P. WEINGARTNER Eds., LogicMethodology and Philosophy of Science VII, , Amsterdam, etc., North Holland, 1986. (Studies in Logic and the Foundations of Mathematics; 114). pp. 387-403. MR874797
  5. [5] J.L. Anderson and T.C. Decanio, Equations of hydrodynamics in general relativity in the slow motion approximationGen. Rel. Grav., Vol. 6, 1975, pp. 197-237. Zbl0379.76101
  6. [6] G.D. Kerlick, Finite Reduced Hydrodynamic Equations in the Slow-Motion Approximation to General Relativity. Part II. Radiation Reaction and Higher-Order Divergent Terms, Gen. Rel. Grav., Vol. 12, 1980, pp. 521-543. 
  7. [7] J.L. Anderson, R.E. Kates, L.S. Kegeles and R.G. Madonna, Divergent integrals of post-Newtonian gravity: Nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching, Phys. Rev. D, Vol. 25, 1982, pp. 2038-2048. 
  8. [8] L. Blanchet and T. Damour, Radiative Gravitational Fields in General Relativity. I. General Structure of the Field Outside the Source, Phil. Trans. R. Soc. Lond., Vol. A320, 1986, pp. 379-430. Zbl0604.35073MR874095
  9. [9] L. Blanchet and T. Damour, Tail-transported temporal correlations in the dynamics of a gravitating system; Phys. Rev. D., Vol. 37, 1988, pp. 1410-1435. 
  10. [10] T. Futamase and B.F. Schutz, The Newtonian and post-Newtonian approximations are asymptotic to general relativity, Phys. Rev. D., Vol. 28, 1983, pp. 2363-2372. MR726155
  11. [11] L.H. Loomis and S. Sternberg, Advanced Calculus, Reading/Mass., etc., Addison-Wesley, 1968. Zbl0162.35301MR227327
  12. [12] H. Cartan, Differential Calculus, Paris, Hermann/London, Kershaw, 1971. MR344032
  13. [13] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, San Francisco, W. H. Freeman, 1973. MR418833
  14. [14] M. Cantor, Spaces of Functions with Asymptotic Conditions on Rn, Indiana Univ. Math. J., Vol. 24, (9), 1975, pp. 897-902. Zbl0441.46028MR365621
  15. [15] Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in Hs, δ spaces on manifolds which are Euclidean at infinity, Acta Math., Vol. 146, (1-2), 1981, pp. 129- 150. Zbl0484.58028MR594629
  16. [16] R.C. Mcowen, The Behavior of the Laplacian on Weighted Sobolev Spaces, Comm. Pure Appl. Math., Vol. 32, 1979, pp. 783-795. Zbl0426.35029MR539158
  17. [17] K. Deimling, Nonlinear Functional Analysis, Berlin, etc., Springer, 1985. Zbl0559.47040MR787404
  18. [18] V.A. Fock, Theory of Space, Time and Gravitation, London, New York, Pergamon Press, 1960. Zbl0085.42301
  19. [19] J. Ehlers, Private communication, 1985. 
  20. [20] Y. Bruhat, The Cauchy Problem, in L. WITTEN Ed., Gravitation: an introduction to current research, New York, London, John Wiley and Sons, 1962, pp. 130-168. MR143626
  21. [21] Y. Choquet-Bruhat and J.W. YorkJr., The Cauchy Problem, in A. HELD Ed., General Relativity and Gravitation, Vol. 1, New York, London, Plenum Press, 1980, pp. 99-172. MR583716
  22. [22] A. Chaljub-Simon and Y. Choquet-Bruhat, Global solutions of the Lichnerowicz equation in general relativity on an asymptotically Euclidean complete manifold, Gen. Rel. Grav., Vol. 12, (2), 1980, pp. 175-185. Zbl0443.35025MR575238
  23. [23] Y. Choquet-Bruhat, Recent Results on the Cauchy Problem in General Relativity, in Aspetti Matematici Della Teoria Della Relatività, Roma, Accademia Nazionale Dei Lincei, 1983, Atti Dei Convegni Lincei; 57, pp. 17-25. 
  24. [24] O. Reula, Private communication, June 1990., 
  25. [25] J. Winicour, Newtonian gravity on the null cone, J. Math. Phys., Vol. 24, 1983, pp. 1193-1198. Zbl0522.76128MR702100

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.